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Abstract

Conceptual models are considered to be the best choice for describing the runoff process in a watershed. However, enormous

requirements for topographic, hydrologic and meteorological data and extensive time commitment for calibration of conceptual

models (especially for distributed models) are often prohibitive factors in their practical applications. Artificial neural networks

(ANN) can be an efficient way of modeling the runoff process in situations where explicit knowledge of the internal hydrologic

processes is not available. An ANN is a flexible mathematical structure that is capable of identifying complex nonlinear

relationships between input and output data sets. This paper presents the use of ANN for predicting the peak flow, timing and

shape of runoff hydrograph, based on causal meteorological parameters. Antecedent precipitation index, melt index, winter

precipitation, spring precipitation, and timing are the five input parameters used to develop runoff hydrograph for the Red River

in Manitoba, Canada. A feed-forward artificial neural network is trained by using back-percolation algorithm. Peak flow, time

of peak, width of hydrograph at 75 and 50% of peak, base flow, and timing of rising and falling sides of hydrograph are the

output parameters obtained from the neural network model to describe a runoff hydrograph. The ANN generated results are

evaluated using statistical parameters: percentage error and correlation. For six flood events for which forecasts are made the

average absolute error in peak flow and time of peak is 6% and 4 days, respectively. Correlation between observed and

simulated values of peak flow and time of peak is 0.99 and 0.88, respectively.
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1. Introduction

Runoff prediction has been an active area of

research in surface water hydrology and will remain

so in the foreseeable future because of the uncertain-

ties associated with both the meteorological and

hydrological parameters causing extreme flood

events. A reasonable prediction of runoff not only
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provides useful information for management of water

resources, but also reduces losses to life and property

caused by extreme events. Predicted runoff is also

vital for the economic analysis of flood management

alternatives. With increasing population and econ-

omic activity in floodplains and along major rivers the

importance of accurate runoff prediction is increasing.

Several techniques have been developed to predict

runoff ranging from empirical or statistical relation-

ships to detailed mathematical models. While empiri-

cal or statistical relationships can provide magnitude

and frequency of floods, they are not capable of

generating a runoff hydrograph with complete infor-

mation on timing of peak, volume of flood and shape

of hydrograph, especially slope of rising and falling

sides of hydrograph. Though frequency analysis of

past flood peaks can provide information on the risk, it

is limited by its lack of consideration of the forcing

factors producing floods. Mathematical models, based

on the consideration of physical processes, have been

divided into two categories in the literature, i.e.

conceptual models, or black box models. Conceptual

models, based on characteristics of model parameter

and variables, can be further divided into two

categories, i.e. distributed and lumped models. Both

distributed, e.g. MIKE SHE (Singh et al., 1999) and

lumped, e.g. HEC-1 (US Army Corps of Engineers,

1998), models are designed to approximate the

general processes and physical mechanisms, which

govern the hydrologic cycle. In terms of data

requirement, simple black box models and highly

sophisticated distributed conceptual models fall on

two extreme ends of a spectrum, while lumped

conceptual models with moderate data requirement

are somewhere in the middle. Due to the realistic

representation of watershed topography and ability to

capture surface and ground water interaction, the most

desirable method to predict runoff hydrograph is a

distributed conceptual dynamic hydrologic model.

However, extensive topographic, meteorological, and

hydrologic data required to describe the runoff

process and time needed to calibrate conceptual

models (especially distributed models) are important

factors to be considered in their practical applications.

Implementation and calibration of conceptual models

(especially distributed models) can typically present

various difficulties, requiring sophisticated mathemat-

ical modeling tools, significant amount of calibration
data, and some degree of expertise and experience

with the model (Hsu et al., 1995).

While conceptual models are of importance in the

understanding of hydrologic processes, there are

many practical situations, such as runoff prediction,

where the main concern is with making accurate

predictions at specific locations along a river. In such

a situation, a hydrologist may prefer not to expend the

time and effort to develop and implement a conceptual

model and instead may choose to implement a simpler

black box model. In the black box approach,

difference/differential equation models are used to

identify a direct mapping between the inputs and

outputs without detailed consideration of the internal

structure of the physical processes. The linear time

series models, such as ARMAX (auto-regressive

moving average with exogenous inputs) model

developed by Box and Jenkins (1976), have been

most commonly used in such situations because they

are relatively easy to develop and implement.

ARMAX type model has been found to provide

satisfactory predictions in many applications where

input–output characteristics are approximately linear,

e.g. forecasting water level or discharge at a point

along the river based on a water level or discharge

value at some location upstream of that point.

However, such models do not attempt to represent

the nonlinear dynamics inherent in the transformation

of snow/rainfall to runoff and therefore may not

always perform well. Based on the success of ANN in

the field of water resources, and working with an

assumption that simplest model that can satisfactorily

describe the system for the given input data should be

used, artificial neural networks (ANN), belonging to

the class of black box models, are explored in this

paper for the development of runoff hydrograph.

This paper outlines a general framework for

developing a runoff hydrograph using artificial neural

network approach. While such a model is not intended

as a substitute for a conceptual model, it can provide a

viable alternative when the hydrologic application

requires that an accurate forecast of stream flow

behavior be provided using only the available time

series data, and with relatively moderate conceptual

understanding of the hydrologic dynamics of the

particular watershed under investigation. A feed-

forward artificial neural network with back-percola-

tion algorithm is used to estimate the shape of
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the runoff hydrograph for major floods on a river.

Based on the available historic data on flood events,

five causal parameters, which play an important role

in flood generation, have been identified. These five

meteorological parameters that also have physical

base are used as input to the neural network model.

The network has been trained to predict eight output

parameters that are used to describe a complete runoff

hydrograph. ANN model has been trained using

historic data and verified on a different data set

never seen by the network. The proposed approach is

implemented for the Red River in Manitoba, Canada.

The neuro-computing approach for developing runoff

hydrograph is presented along with details on input

and output parameters of neural network model. The

paper concludes with a discussion of results.
2. Application of ANN in hydrology

The application of ANN in hydrology started in the

early 1990s. A state-of-the-art review of ANN

applications in hydrology can be found in the ASCE

task committee report (2000b). Some applications of

ANN in water resources include: precipitation–runoff

modeling (Rajurkar et al., 2004; Elshorbagy and

Simonovic, 2000; Tokar and Markus, 2000; Zealand

et al., 1999; Fernando and Jayawardena, 1998;

Hsu et al., 1995); stream flow forecasting (Morad-

khani et al., 2004; Anctil et al., 2004; Özgür, 2004)

and river stage forecasting (Liong et al., 2000;

Thirumalaiah and Deo, 1998; Karunanithi et al.,

1994). Attempts have been made to develop runoff

hydrographs using different input parameters. Muttiah

et al. (1997) used information on the drainage basin,

elevation, average slope, and average annual precipi-

tation to predict 2-year peak discharge from a

watershed. Carriere et al. (1996) used ANN with a

recurrent back-propagation algorithm to generate a

runoff hydrograph using a virtual runoff hydrograph

system. They used rainfall intensity, duration, catch-

ment slope, and catchment cover to estimate runoff

hydrographs. Smith and Eli (1995) used a back-

propagation ANN to predict the peak discharge and

the time of peak resulting from a single rainfall event.

They used a synthetic watershed to generate runoff

from stochastically generated rainfall patterns. Mar-

kus et al. (1995) used ANNs with back-propagation
algorithms to predict monthly stream flows from snow

water equivalent and temperature data. Zhu et al.

(1994) predicted upper and lower bounds on the flood

hydrograph based on rainfall and previous flood data.

The ANN approach presented in this research uses

five causal parameters, i.e. antecedent precipitation

index; melt index; winter precipitation; spring pre-

cipitation; and timing to develop a runoff hydrograph

(Ahmad and Simonovic, 2001).
3. Issues in implementation of artificial neural
networks (ANN)

Details on the theoretical aspects of ANN can be

found elsewhere (ASCE Task Committee, 2000a;

Anderson, 1995; Maren et al., 1990). There are two

important issues concerning the implementation of

artificial neural networks. The first issue involves a

specification of the network size (the number of layers

in the network and the number of nodes in each layer).

This task involves decision on the number of nodes

required in the hidden layer. Generally, the more

complex the mapping the larger the number of hidden

nodes required. However, too many hidden nodes can

help network memorize the training set and behave

like a look-up-table at the expense of any useful

generalization that will result in poor performance on

unseen data. The second issue involves finding the

optimal values for the connection weights. Starting

with a small number of nodes and gradually increas-

ing the network size until the desired accuracy is

achieved address the first problem. However, this

approach heavily depends on the ability to find the

optimal weights. The objective function (typically

mean square error) used to train the ANN has many

local optima and extensive regions of poor sensitivity

to variations in weights (Hsu et al., 1995). Back-

propagation algorithms (BPA), commonly used to

train the network weights, display poor performance

under these conditions. The back-percolation (Jurik,

1990) method has been used in this research to

improve the convergence speed of BPA. Back

propagation is a learning algorithm for a multi-

layered neural network in which the weights are

modified via propagation of an error gradient back-

ward from the output to the input. A back-percolation

algorithm modifies the error propagation method of



S. Ahmad, S.P. Simonovic / Journal of Hydrology 315 (2005) 236–251 239
the back-propagation algorithm and considers the

errors in the hidden nodes separately from the error in

the output node. The model of the runoff hydrograph

prediction presented in this research, using artificial

neural networks, uses back-percolation algorithm to

solve a feed-forward artificial neural network. The

runoff hydrograph prediction model and its appli-

cation to a case study are presented in Section 4.
4. Case study application

The proposed artificial neural network approach

for predicting runoff hydrograph has been applied to

the Red River in Manitoba, Canada (Fig. 1). The

discharge measurement station near St Agathe has

been selected as a site to estimate runoff hydrograph

as this is the only station on the Red River, close to the

city of Winnipeg, where natural flow (not affected by

flood control structures) measurements are available.

The Red River originates in the north-central United

States in Minnesota and flows north. It forms the

boundary between North Dakota and Minnesota
Fig. 1. Red River Basin, Manitoba, Cana
and enters Canada at Emerson, Manitoba. It continues

northward to Lake Winnipeg. From origin to its outlet

in Lake Winnipeg, the river is 563 km long. The

drainage area of the Red River basin at St Agathe is

116,500 km2 of which nearly 103,600 km2 are in US.

The remaining 13,000 km2 are in Canada. The basin is

remarkably flat. The slope of the river averages about

0.05 m/km. The basin is about 100 km across at its

widest. During major floods entire valley becomes the

floodplain.

The Red River basin has a sub-humid to humid

continental climate with moderately warm summers,

cold winters, and rapid changes in daily weather

patterns. Extreme temperature variations are the

norm. On average, the Red River basin mean monthly

temperature ranges from K15 to C20 8C. About

three-forth of the basin’s approximately 50 cm of

annual precipitation occurs during April through

September, with almost two-thirds falling during

May, June and July. November through February

are the driest months (IJC, 1997). These hydrological,

meteorological and topographic factors are very

important in understanding the flooding in the basin.
da (source Winnipeg Free Press).
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The low absorptive capacity of the basin’s clay soil is

also a contributing factor towards floods.
5. Modeling approach

The modeling approach used to develop runoff

hydrograph along with details on input and output

parameters is presented in this section. The selection

of appropriate input parameters that will allow an

ANN to successfully produce the desired output is a

complex task. Good understanding of the hydrologic

system under consideration is an important prerequi-

site for successful application of ANNs. Physical

understanding of the process being studied leads to

better choice of input variables.

A careful study of historic flood data in the

Canadian portion of the Red River basin suggests a

causal pattern followed by large floods. The climatic

conditions, which lead to the likelihood of an extreme

flood, may be summarized as follows (Royal Com-

mission, 1958):
†
 a wet summer or fall in the preceding year which

thoroughly saturates the ground before freeze-up;
†
 cold weather with little snow during the early

winter, allowing a deep penetration of frost;
†
 a cold winter with heavy snowfall over the entire

drainage basin;
†
 a late spring followed by a sudden rise in

temperature, producing a rapid runoff; and
Table 1

Correlation between input parameters

API MI WP SP T

API – 0.02 0.18 0.01 0.32

MI 0.02 – 0.33 0.19 0.19
heavy rain during the runoff period.

Based on this information the following five

parameters, i.e. antecedent precipitation index (API),

melt index (MI), winter precipitation (WP), spring

precipitation (SP) and timing (T) are identified as

input to the neural network model for predicting a

runoff hydrograph. These five parameters are col-

lected in the form of processed data from the Water

Resources Branch, Manitoba Department of Conser-

vation. The parameters are defined in the following

section. Details on calculation of these parameters can

be found in Warkentin (1999).

WP 0.18 0.33 – K0.04 0.17

SP 0.01 0.19 K0.04 – 0.23
T 0.32 0.19 0.17 0.23 –

Antecedent precipitation index (API). This is the

index of soil moisture at freeze-up the previous
autumn, based on weighted basin precipitation

from May to October.
Melt index (MI). This is expressed in average

degree-days/day at Grand Forks during the active

melt period (8F).
Winter precipitation (WP). Total basin precipi-

tation from November 1 of previous year to the

start of active melt during the flood year, measured

in inches.
Spring precipitation (SP). Total basin precipitation

from the start of active snowmelt to the start of the

spring crest, measured in inches.
Timing factor (T). An index of the south–north

time phasing of the runoff based on the percentage

of tributary peaks experienced on the date of the

mainstream peak. This is basically a percentage of

the worst possible south–north progression of melt

and rain. The value varies between 0 and 100,

where 100 refers to worst. For 1997 flood T was 62.

A correlation test, for two parameters at a time, is

done to determine whether any dependency exists

between the causal parameters. The inter-correlation

matrix is shown in Table 1. The results of the

correlation test (lower values of correlation coeffi-

cient) suggest that causal parameters are statistically

independent of each other. The strongest correlation

between winter precipitation and the melt index is

0.33.

Eight network output parameters are identified that

are required to estimate a runoff hydrograph. These

output parameters are peak flow (Peak), timing of

peak (Tp), timing of the rising (T1) and recession sides

(Tb) of the hydrograph, base flow both at the start of

the rising side (BFr) and end of the recession side

(BFf) of the hydrograph, width of the hydrograph at

50% of peak (W50) and the width of hydrograph at

75% of the peak (W75). The eight output parameters

are defined in Fig. 2. To provide a data set for training
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of the neural network these parameters are extracted

from hydrographs of observed floods.
6. Neuro-computing procedure

Daily discharge data is available for 40 years

(1958–1997) from a gauging station near St Agathe on

the Red River. The peak annual discharge recorded at

this station range between 321 and 3230 m3/s.
Because the objective of this work is to predict high

flow/floods, 7 years of data with very low discharge,

i.e. peak less than 400 m3/s, are removed from the

data set. These years are: 1958; 1961; 1968; 1977;

1981; 1990; and 1991. The remaining 33 years of data

are divided into three sets, i.e. training data (cali-

bration), test while training data (verification), and

forecasting data. Six years, i.e. 1976, 1978, 1979,

1989, 1996, and 1997 are separated from the data

set for forecasting purposes. Within the 40 years of



Table 2

ANN model input parameters for selected floods

Flood 1976 Flood 1978 Flood 1979 Flood 1989 Flood 1996 Flood 1997 Mean

(training data)

Max

(training data)

API 2.29 2.95 2.03 1.81 2.89 2.49 2.4 3.24

MI 11.4 7 18 3.5 10 11.6 7.4 14.9

WP 3.62 4.29 4.88 4.96 4.88 8.6 3.6 6.18

SP 0.12 0.94 2.89 0.70 0.12 0.1 0.7 2.9

T 50 53 47 43 75 62 45.6 81
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the data used the largest flood occurred in 1997.

Keeping in mind that the objective is an estimation of

a hydrograph for large floods, three major floods are

included in the forecasting data set. From the

remaining 27 years, 7 years are separated by random

selection to be used for testing while training the

network. These years are 1959, 1963, 1970, 1972,

1980, 1984, and 1985. The remaining 20 years of data

is used for training the network.

The method for generating the runoff hydrograph,

based on hydro-meteorological parameters, using

ANN approach is summarized as follows:
†
 Important causal parameters responsible for gen-

erating large floods are identified. These par-

ameters are: antecedent precipitation index (API);

melt index (MI); winter precipitation (WP); spring

precipitation (SP); and timing factor (T). These

input parameters, for the six selected floods for

which forecasts are made, are given in Table 2.

Mean and maximum values of input parameters for

the training and test while training datasets are also

provided.
†
 Important characteristics are identified that can be

used to develop a runoff hydrograph. These

hydrograph characteristics are: peak flow; time of

peak; base flow at both the rising and recession

sides of the hydrograph; timing of the rising and

recession sides of the hydrograph; and width of the

hydrograph at 75 and 50% of the peak. The

hydrograph characteristics are extracted from a

historic runoff time series to train the ANN.
†
 An ANN model is developed by relating input

parameters to flood hydrograph characteristics.

Two networks are developed with five input and

four output parameters in each network. One

hidden layer with four nodes is used in each

network.
†
 The performance of the network is evaluated

during ‘training’ and ‘test while training’ stages.

In addition to considering the agreement between

observed and simulated hydrographs, statistical

performance measures of percentage error and

correlation are used to evaluate the performance of

the network. After comparing the observed flood

hydrograph to that generated with ANN, adjust-

ments in the controlling parameters of the ANN,

such as number of nodes and weights, are made.
†
 Once network training is complete, it is used to

predict the hydrograph parameters using the input

data never seen by the network (forecasting data

set).
†
 The output parameters obtained from the neural

network model are used to develop a runoff

hydrograph.

In short, the modeling process starts with defining

the purpose/goal of the model. Next step involves

identification of key input and output variables in the

system. These system variables are mapped in the

ANN. Then structure of ANN is adjusted by trial and

error making decisions on number of nodes in the

hidden layer, etc. Neural network is then run to test

the behavior of the system. Network is evaluated by

comparing the predicted and observed values. Based

on the evaluation, improvements are made to the

network structure. When the network performance is

satisfactory it is ready for forecasting.
7. Performance evaluation statistics

The statistical evaluation methods are more

objective than the visual inspection of the agreement

between simulated and observed discharge hydro-

graphs (ASCE Task Committee, 1993). In order to
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evaluate the performance of the neural network,

percentage error and correlation were calculated for

each output parameter

Percentage Error

Z
Predicted Value KObserved Value

Observed Value
!100 (1)

A positive or negative value of percentage error

represents an over prediction or under prediction by

the model, respectively.

The correlation statistics measures the correlation

between observed and forecasted values; the optimal

value is 1.0. The correlation calculation returns the

covariance of two data sets divided by the product of

their standard deviations.

For two variables x and y, the correlation is defined

by

Corðx; yÞ Z
Covðx; yÞ

sxsy

(2)

where sx, sy is standard deviation, Cov (x,y) is the

covariance and x and y represent observed and

predicted values, respectively

Covðx; yÞ Z
1

n

Xn

iZ1

ðxi K �xÞðyi K �yÞ (3)

sx Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

iZ1

ðxi K �xÞ2

s
(4)

sy Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

iZ1

ðyi K �yÞ2

s
(5)

where �x and �y represent the mean

�x Z
1

n

Xn

iZ1

xi (6)

�y Z
1

n

Xn

iZ1

yi (7)

Correlation can be used to determine whether two

ranges of data move together; that is, whether large

values of one set are associated with large values of

the other (positive correlation), whether small values

of one set are associated with large values of the other
(negative correlation), or whether values in both sets

are unrelated (correlation near zero). The relationship

between the peak flow and percentage error in each

parameter of the predicted hydrograph is studied. This

relationship helps in identifying a trend (if there is

any) in model performance for flood events of

different magnitudes.

Average absolute error is used to estimate overall

average error in all predictions for a certain parameter

Average Absolute Error

Z
Error in Prediction 1C/CError in Prediction n

Total number of Predictions
(8)
8. Results

The comparison of observed and predicted hydro-

graphs for all 6 years of unseen data is shown in

Fig. 3a–f. Error in individual hydrograph parameters,

for all 6 years for which forecasts are made, is given in

Table 3. The average absolute error for all 6 years for

peak, Tp, T1, Tb, BFr, BFf, W50 and W75 is 6%, 4.17,

5.5 days, 8, 25, 32, 19, and 20%, respectively.

The relationship between the peak flow and error

in predicted hydrograph parameters is shown in

Fig. 4a–h. The correlation between observed and

predicted values of hydrograph output parameters is

shown in Fig. 5a–h. The hydrometeorological charac-

teristics of floods are summarized in Table 2. In the

following sections, first the hydrometeorological

characteristics of floods are described, and then a

discussion of results with respect to each hydrograph

parameter predicted by the network is presented.

Lowest values for three of the five input par-

ameters, i.e. API, MI and T belong to 1989 flood,

ranked number 5 (in terms of flood peak) among six

flood events for which forecasts are made. The lowest

value of WP corresponds to 1976 flood that is ranked

number 6. Surprisingly, the lowest spring precipi-

tation value belongs to 1997 flood, the largest among

six flood events. Highest value of MI and SP belong to

1979 flood, second largest flood among the six flood

events. The highest winter precipitation was in 1997,

the largest flood event. The highest API and T

correspond to 1978 and 1996 flood events, ranked
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Fig. 3. (a–f) Comparison of observed and ANN generated runoff hydrographs.
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numbers 3 and 4, respectively. It is clear that the

largest flood event does not result from the largest

value for each input parameter; it can result from any

combination of input parameters.
8.1. Peak flow (peak)

The network produced an excellent prediction of

peak flows for 1978, 1979, and 1997 (Fig. 3b,c,f,

respectively); however, it over estimated the peak in
1989 (Fig. 3d) and under estimated it in 1976 (Fig. 3a)

and 1996 (Fig. 3e). The error in estimating peak

ranges from K8 to 17%. The average absolute error

for all 6 years is 6%. The relationship between peak

flow and percentage error in peak (Fig. 4a) and error

values shown in Table 3 indicate that peak flow

forecast is better for wet years. The network tends to

fit the higher flows quite well. The error in the

predicted peak for the three largest floods (in

descending order) is found to be K1, 2 and K6%,
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respectively. The overall performance of network in

estimating the peak is excellent; it is also supported by

the correlation value of 0.99 between the observed

and forecasted peak flow values (Fig. 5a).
8.2. Time of peak (Tpeak)

The error in estimating the time of peak is in the

range of K7 to 4 days. The average absolute error is

4.17 days for all 6 years for which forecasts are made.

There is no detectable trend in the relationship

between peak flow and percentage error in time of

peak (Fig. 4b). Network performance is very good in

estimating the time of peak. The correlation value

between observed and forecasted time of peak is 0.88.
8.3. Time at the start of rising side of hydrograph (T1)

Over all, the network captured the timing of the

start of the rising side of the hydrograph quite well.

The percentage error in estimating the time T1 is in the

range of K7 to 3 days. The average absolute error is

5.5 days for all 6 years for which forecasts are made.

The relationship between the peak flow and percen-

tage error in T1 shown in Fig. 4c and error values

shown in Table 3 indicate no detectable trend.

Network performance is very good in estimating the

time at the start of the rising side of hydrograph.

Although correlation value between observed and

predicted T1 is 0.59, it should be noted that the

presence of a large error in a single record in a time

series can significantly affect the correlation value.

Because of a 17% error in estimating T1 in 1996, the

correlation coefficient is low.
8.4. Time of base (Tb)

The percentage error in estimating the time of base

(time between the rising and recession side of the

hydrograph) is in the range of K3 to 19%. The

average absolute error is 8% for all 6 years for which

forecasts are made. The relationship between the peak

flow and the percentage error in T1 shown in Fig. 4d

and error values shown in Table 3 indicate that there is

a trend (though not decisive) that the percentage error

increases with an increase in the peak flow. The

network performance is very good in estimating
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the time of base. The correlation value between

observed and forecasted Tb is 0.91.

8.5. Width of hydrograph at 50% of the peak (W50)

The network produced an excellent forecast of W50

for 1997 (Fig. 3f). The overall error in estimating
the W50 is in the range of K24 to 28%. The average

absolute error is 19% for all 6 years for which

forecasts are made. The relationship between the peak

flow and the error in W50 shown in Fig. 4e and error

values in Table 3 indicate that model performance is

better for wet years. The percentage error appears to

decrease with increase in peak flow. However, if we
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ignore the results of 1997, there is no significant trend

in the results. The overall network performance is

average in estimating the width of hydrograph at 50%

of the peak; the correlation value between observed

and forecasted W50 is 0.83.
8.6. Width of hydrograph at 75% of the peak (W75)

The network estimate of W75 for 1997 (Fig. 3f) is

excellent. The percentage error in estimating the W75

is in the range of K33 to 25%. The average error is
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20% for all 6 years for which forecasts are made. The

relationship between the peak flow and the percentage

error in W75 is shown in Fig. 4f and error values are

given in Table 3. The network performance is average

in estimating the width of the hydrograph at 75% of

the peak. The correlation value between observed and

predicted W75 is 0.84.

8.7. Base flow at the rising side of hydrograph (BFr)

The average absolute percentage error in estimat-

ing BFr is 25% for all 6 years for which forecasts

are made. The error ranges from K31 to 57% for

different years. This relatively high error value

might be due to the lumped values of parameters

used as input for predicting runoff. The relationship

between peak flow and %error in BFr (Fig. 4g)

shows a trend that error reduces for wet years. The

correlation value between observed and forecasted

BFr is 0.98.

8.8. Base flow at the recession side of hydrograph

(BFf)

Network performance in estimating the BFf is very

much similar to its performance in estimating BFr.

The percentage error in estimating the BFf is in the

range of K29–62%. The average absolute error is

32% for all 6 years for which forecasts are made. This

high error value might be due to the lumped values of

parameters used as input to the network or it may

suggest that the model is not successful in adequately

representing the process by which precipitation is

converted to runoff, especially at the end of rainfall

event. Perhaps, some other watershed characteristics,

not currently used as input into the model, affect the

recession curve of the hydrograph. The relationship

between the peak flow and the percentage error in BFf

(Fig. 4h) shows a trend where error is reduced for

wet/high flow years. The correlation value between

observed and forecasted BFf is 0.79.

To explore the relative importance of input

variables and their impact on final results, a

comparison is made. The input parameters for the

network are ranked in order of their effect on the

output of network. This ranking is based on weights

associated with each input node and being transferred

to the hidden layer. The final weights associated with
input parameters are calculated from several training

runs and using both training and test while training

data sets. The results are presented in Fig. 6 in the

form of a bar chart with range of value between 0 and

1. Each bar corresponds to a different input to the

network. The higher the bar, the more significant

influence a particular input has on the output. Results

in Fig. 6 show that summer precipitation (SP), winter

precipitation (WP) and antecedent precipitation index

(API) are the most important input parameters (in

descending order). Melt index and timing are

relatively less important factors.

Water Resources Branch, Manitoba Department of

Conservation has developed a formula (Eq. (9)) based

on nonlinear regression analysis of data from past

flood years to estimate peak flows at James avenue,

a station located downstream of St Agathe

Peak ðcfsÞ Z 149 ðAPIÞ1:5ðWP CSPÞ1:5ðMIÞ0:3ðTÞ0:4

(9)

This relationship works reasonably well for fore-

casting peak discharge. However, the ANN model,

presented here, can provide a complete description of

the hydrograph including, peak flow, timing, base

flow, shape of hydrograph and flood volume.
9. Summary of results

Artificial neural network proved to be time

efficient and a reasonably accurate approach for the

development of runoff hydrograph based on
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meteorological parameters. The network is able to

predict peak flow, timing of peak, timing of start of

the rising side of hydrograph, and the time base of

hydrograph very well with 6%, 4.17, 5.5 days and

8% average absolute error, respectively, for 6 years

of prediction. Model performance is good in

predicting the width of hydrograph at 50 and

75% of the peak with an average absolute error of

15–20%. The average absolute error in predicting

the base flow at start and end of hydrograph is in

the range of 25–30%.

The model performance in predicting the peak flow

and time of peak is very good; this suggests that these

hydrograph characteristics can be estimated well

using the current input parameters. However, the

inability of the simulated hydrograph to properly

match the shape of the recession side of the

hydrograph and the tendency to be out of phase may

be either due to the lumped nature of input parameters

used or it is an indication that additional input

parameters may be required.

In general, the network performance is good during

the high flows. For eight output parameters predicted

by network, the highest prediction error is for the base

flow at the start and end of the hydrograph.

Fortunately, these are not the most important

parameters in developing a runoff hydrograph, as

base flow is typically 5–6% of peak flow. Considering

the lumped values of parameters used for this study,

the network performance is very good.
10. Conclusions and discussion

The research presented in this paper focuses on the

estimation of the shape of flood hydrograph using the

artificial neural network approach. The flood hydro-

graph on the Red River in Manitoba, Canada is

estimated as a case study to demonstrate the

application of the proposed technique. A feed-forward

artificial neural network is trained on historic data

using back-percolation algorithm. The five input

parameters used are, antecedent precipitation index

(API), melt index (MI), winter precipitation (WP),

spring precipitation (SP), and timing factor (T). As

output, the network is trained to generate information

on peak flow, time of peak, base flow and timing for

rising and falling sides of hydrograph and width of
hydrograph at 50 and 75% of peak flow. These

parameters are used to develop a complete runoff

hydrograph. Evaluation statistics of percentage error

and correlation are employed to estimate the accuracy

of predicted hydrograph.

The ANN approach presented here does not take

into account the physical processes involved in runoff

generation; it is by no means a substitute for

conceptual watershed modeling. However, the pro-

posed ANN-based hydrograph estimation technique is

a valuable alternative to conceptual watershed

simulation techniques, where time is a constraint,

limited topographic data is available, and where a

complete understanding of the physical processes of

watershed is not available.

One limitation of the neural network approach

presented in this research, with current input par-

ameters, is its inability to predict a two-peak

hydrograph. The second peak usually occurs in the

later part of the year (in July) due to rainfall only; this

occurred in 1964 and 1975. The reason for this

limitation lies in the nature of the input parameters

used. Using lumped parameters as input (a single

value for entire year), it is not possible for the network

to generate two peaks. One way of dealing with this

limitation is to use higher resolution data (instead of

using a single input parameter value for 12 months,

parameters can be calculated for say every 3 months).

Further exploration is required.

Lead-time is an important issue in forecasting of

hydrologic events. Parameter values for API, WP, and

MI can be calculated well in advance of an anticipated

flood. However, estimates of SP and T become

available just before the actual flood event. SP is

measured as the total basin precipitation from the start

of active spring melt to the date of spring crest at

Emerson (station upstream of St Agathe located at the

Canadian–US border). Once flood arrives at Emerson,

approximate lead-time of 3–4 days is available until

flood peak reaches St Agathe. This lead-time may be

sufficient for emergency response such as evacuation

or operation of floodway. Any attempt to increase the

lead-time will involve forecasting the values for SP

and T.

For the six flood events for which forecasts were

made in this paper, the input parameter values for

API, SP and T were within the range of the data used

for training. Input parameter values for MI in 1979
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and WP in 1997 were outside the historic range. For

output parameters, all values were within the normal

range of data used for training with exception of peak

flow in 1997. In spite of this, the network produced

good forecasts for all six flood events.

This approach for estimating a flood hydrograph is

generic in nature and can be applied to other locations

in the Red River basin or to other rivers having similar

flood characteristics. For example, transferring the

model to any other location in the Red River will

require training the network for output parameters

extracted from hydrograph at that location, while

using same input parameters. For watersheds that are

similar in characteristics (e.g. heavy snow, flat

topography), same architecture of ANN, in terms of

input and output parameters, can be used, but data is

watershed specific. There are simulation scenarios, in

addition to what has been demonstrated in this study

that can be tested using the existing framework.

Training the model in reverse, i.e. using output

parameters as input, a scenario of hydrologic and

meteorological conditions can be identified that may

lead to a catastrophic flood.
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