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ABSTRACT: Spring runoff prediction in the Red River Valley, southern Manitoba, Canada, is an important
issue because of the devastating effect of the flood of 1997 in that area. Increasing the accuracy of the prediction
process is a practical necessity. This study looks at the artificial neural networks (ANN) technique and compares
it to linear and nonlinear regression techniques. The advantages and disadvantages of the three modeling tech-
niques are discussed. To fill the predictive accuracy evaluation gap left by the mean squared error and the mean
relative error, a modified statistic, namely, pooled mean squared error, is developed and explained. The aim of
this work is to show the applicability of ANN for runoff prediction and to evaluate their performances by
comparing them with traditional techniques. In this study, according to the accuracy of results, the ANN models
show superiority in most of the cases. However, in some situations, the performance of the other two techniques
was comparable.
INTRODUCTION

In April 1997, a major flood occurred on the Red River in
southern Manitoba, Canada. To protect lives and to minimize
potential damage and loss of property, evacuation was the only
solution. The 1997 Red River flood emphasizes the importance
of improving flood forecasting (International Joint Commis-
sion 1997). The severity of major floods contributes signifi-
cantly to increased attention toward the investigation of dif-
ferent forecasting techniques and hence increases their
prediction accuracy.

Flood forecasting follows two major modeling approaches:
conceptual (phenomenological) modeling, which retains some
of the physical laws in their mathematical formulation, and
black-box modeling, which relies heavily on an input-output
description of the conceptual models. The large amount of data
required for the conceptual models, along with the costs of
collecting the data, make the black-box models more attractive
to hydrologists. This study compares three different techniques
of the black-box approach by looking at the annual runoff
records of the Red River basin. The first technique examined
is the standard statistical method of multiple linear regression.
Second, a multiple nonlinear regression is applied to test its
applicability and usefulness in forecasting the flow of the Red
River. The Water Resources Branch of the Natural Resources
Department of Manitoba employs nonlinear regression for
flood forecasting of the Red River. The third is the Artificial
Neural Network (ANN) technique. ANN simulates biological
neural systems and the human way of thinking and learning.
Comparison of the techniques is important and beneficial be-
cause of the differences among the three in their underlying
solution algorithms and in their use of inputs.

The last decade has witnessed many applications of ANNs
in water resources. These include rainfall forecasting (French
et al. 1992), multivariate modeling of water resources time
series (Raman and Sunilkumar 1995), modeling of rainfall-
runoff process (Hsu et al. 1995), and flow forecasting (Karun-
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anithi et al. 1994; Zealand et al. 1999). The intent here is to
contribute to the concurrent endeavors to reach a conclusion
on the usefulness and applicability of ANN in the area of run-
off prediction. Furthermore, any improvement in the accuracy
of flood prediction (due to adoption of the ANN technique)
could help those affected by the flood. Using annual input
variables, this study assesses the performance of the ANN
technique compared to linear and nonlinear regression in pre-
dicting the spring runoff of the Red River.

RED RIVER FLOODS

Floods in the Red River Valley typically occur during the
spring as a direct consequence of the melting of the winter
snowpack. Factors that contribute to severe flooding condi-
tions are (1) high water content in the soil at freeze-up time
in the fall; (2) heavy snowpack accumulation during the win-
ter; and (3) rapid melting, possibly in combination with spring
rainfall. The large size of the Red River basin (61,000 km2)
can lead to contrasting runoff patterns within the various por-
tions of the basin due to extreme spatial variations in mete-
orological conditions. In this study, annual variables are used
to predict spring runoff. The basic data set includes (1) the
runoff (Ro) which is the model output (cm); (2) total precip-
itation (Tot. Pcpn) measured from November 1 to the end of
the following spring’s runoff (cm); (3) antecedent precipitation
index (Api), which is weighted precipitation from May to Oc-
tober of antecedent year (cm); (4) melt index (Mi) in degree-
days/day during the active snowmelt period (7C); (5) winter
temperature index (Wti) based on mean temperature from De-
cember to February at Grand Forks, N. Dak. (7C); and (6)
previous spring runoff (Psr) (cm), including April rainfall run-
off. A yearly record of 50 years (1948–1997) is used for train-
ing (calibrating) and testing (verifying) the adopted models in
different experiments. The variables are further explained in
Appendix I.

METHODOLOGY

Three adopted techniques are briefly presented as follows:

• Linear Regression Analysis. Scatter diagrams of each of
the predictor variables were individually analyzed against
the response variable (the runoff). It was found that 83.5%
of the variance in the runoff data is represented by a uni-
variate linear regression model that relates the runoff to
total precipitation. Therefore, inclusion of more predictor
variables in a multiple linear regression model is worth
testing in this study. A multiple regression model that de-



scribes the relationship between the runoff and the five
independent variables is given as follows:

y = b 1 b x 1 b x 1 b x 1 b x 1 b x 1 ε (1)0 1 1 2 2 3 3 4 4 5 5

where y denotes the runoff of the Red River; x1, . . . , x 5

denote the five input variables; and ε denotes the error
term. The parameter estimation technique can be found in
Montgomery and Peck (1992).

• Nonlinear Regression Analysis (NRA)—Any model that
is not of the form given by (1) will be called a nonlinear
model. Two examples of such models used in this study
are

u u u u u2 3 4 5 6y = u ?x ?x ?x ?x ?x 1 ε (2)1 1 2 3 4 5

u x 1u x 1u x 1u x 1u x2 1 3 2 4 3 5 4 6 5y = u ?e 1 ε (3)1

The parameters to be estimated are denoted by b in (1)
and u in (2) and (3); xi and ε are as defined earlier. Details
of the methodology can be found in Draper and Smith
(1981).

• ANN Technique—The ANN technique is a computing
paradigm that may have more than one mode. The feed-
forward neural networks with back-propagation learning
algorithm are the most widely used neural networks (Free-
man and Skapura 1991; Anderson 1995). This study
employs three-layer networks. The configuration of a neu-
ral network includes determining the number of hidden
layers, the number of nodes in each of the hidden layers,
and the connection weights. Details on the Ann and the
back-propagation training algorithm (to estimate the net-
work parameters) can be found in (Maren et al. 1990;
Freeman and Skapura 1991; Anderson 1995; Dhar and
Stein 1997).

INDICATORS OF MODEL PERFORMANCE

A mean squared error (MSE) is one of the most commonly
used performance measures in hydrological modeling. Many
researchers used MSE or its root (RMSE) as an accuracy mea-
sure (Carpenter and Barthelemy 1994; Bastarache et al. 1997;
Shamseldin 1997). Others, such as Karunanithi et al. (1994),
used MSE and mean relative error (MRE) to try to fill some
of the gaps left by considering only MSE and stated that the
squared error and the relative error provide different types of
information about model predictive capabilities. Formulas for
calculating MSE and MRE are given as follows:

n
1 2ˆMSE = (D 2 D ) (4)i iOn i=1

n ˆ1 (D 2 D )i iMRE = (5)O U Un Dii=1

where Di stands for the measured (actual) value; D̂i = estimated
value; and n = number of observations. Using the MRE to
rank different models according to their performance may re-
sult in a different rank from that obtained using MSE. To be
more comprehensive in the evaluation of different aspects of
model performance, Hsu et al. (1995) used RMSE, percent
error in volume, percent error in matching the maximum flow,
and the correlation between the observed and simulated flows.
Those who used only the MSE to assess the performance of
different models failed to recognize the appropriateness of
MSE as a sole measure of model performance. Meanwhile,
others who used more than one measure did not provide guide-
lines for choosing the model when different measures favor
different models. In some cases, preference of one model to
another was based on a small difference in the MSE. The MSE
is an absolute value and not referenced to any benchmark
TABLE 1. Actual and Predicted Flows, Residuals, and Relative
Errors (Hypothetical Case)

Actual
flow
(1)

Model A

Pre-
dicted
flow
(2)

Residual
values

(3)

Relative
error
(4)

Model B

Pre-
dicted
flow
(5)

Residual
values

(6)

Relative
error
(7)

100 105 5 0.05 (1) 101 1 0.01 (1)
110 115 5 0.045 (1) 109 21 0.009 (1)
90 85 25 0.056 (18) 100 10 0.111 (20)

100 105 5 0.05 (1) 101 1 0.01 (1)
105 110 5 0.048 (1) 104 21 0.0095 (1)
113 108 25 0.044 (1) 114 1 0.0088 (1)
95 100 5 0.053 (17) 96 1 0.0105 (1)

120 125 5 0.042 (1) 119 21 0.0083 (1)
105 100 25 0.048 (1) 115 10 0.095 (19)
117 122 5 0.043 (1) 118 1 0.0085 (1)

Note: Values in parenthesis are pooled rank.

point, not comprehended according to a predesigned threshold
to indicate the significance of the MSE value or even the sig-
nificance of the difference between two calculated MSEs of
different models. It is apparent that a statistical measure ca-
pable of overcoming the above discussed difficulties is re-
quired.

POOLED MEAN SQUARED ERROR (PMSE)

Assuming a common hydrological problem of predicting
streamflow using two different models (A and B), a different
statistic is proposed to achieve the following objectives: (1)
To combine the effect of the MSE and MRE in one measure
—the PMSE; and (2) to increase the effect of the significant
residuals that are above a predetermined threshold and to re-
duce the differential effect of the insignificant residuals that
are below the predetermined threshold.

A hypothetical numerical example is provided to show the
steps followed in the development of the PMSE. Table 1
shows the actual, estimated flows, residuals, and relative errors
for the hypothetical example. The steps are as follows:

1. A threshold is determined, and only the residuals above
its value are considered significant. A threshold can be
any value, but this study considers 5% of the actual val-
ues.

2. Relative error of the outputs from the two models are
pooled together to form one set of size N(N = 20 in this
hypothetical example, n1 = n2 = N/2).

3. If the relative error is #5%, the predicted value is given
a constant rank. In our example, predicted values with
residuals #5% of the actual values are ranked 1.

4. Predicted values with relative errors higher than the
threshold 5% are ranked so that the highest residual is
given the rank N, the next highest is given the rank
N-1, and so on.

5. The PMSE is calculated using the following relationship:

N/2

2ˆ(D 2 D ) ?ki i iO
i=1

PMSE = (6)N

kiO
i=1

where ki = rank of the residual error. The ideal value of
MSE, MRE, and PMSE is 0.0. In this study’s example,
MSE of Model A = 25 and MRE(A) equals 0.048,
whereas MSE(B) = 20.8 and MRE(B) = 0.0281. One can
favor Model B over Model A, and the values in Table 2
clearly show that all predicted values of Model A can be
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TABLE 2. Performance of Different Models on Testing Data

Experiment
(1)

ANN

MSE
(2)

MRE
(3)

LRA

MSE
(4)

MRE
(5)

R 2

(6)

NRA

Model 1

MSE
(7)

MRE
(8)

R 2

(9)

Model 2

MSE
(10)

MRE
(11)

1 0.0808 0.4357 0.1839 0.5665 0.896 0.0495 0.473 0.92 0.070 0.675
2 0.1467 0.447 0.2939 0.5777 0.877 0.0481 0.543 0.877 0.647 0.599
3 0.0556 0.5549 0.1454 0.5090 0.911 0.1279 0.418 0.965 0.705 0.731
4 0.0777 0.3155 0.1196 0.4447 0.844 0.111 0.455 0.875 0.436 0.707
5 0.073 0.5243 0.1258 0.3709 0.78 0.0566 0.623 0.792 NA NA
6 0.1286 0.4708 0.1895 1.1624 0.969 1.544 0.707 0.987 1.543 2.84

Note: NA = not available.
accepted because they lie within the predefined thresh-
old. Two values out of 10 (20%) predicted by Model B
are in clear violation of the threshold, which indicates
low reliability of Model B. It can be concluded that nei-
ther of the two regular measures is able to interpret or
explain the results of this study’s example. On the other
hand, calculating the PMSE results in values of 9.72 and
43.42 for Models A and B, respectively. These values
are more reasonable according to the concept of satis-
fying or violating the threshold. It should be noted that
other authors established measures of errors for different
purposes. The closest example is Sorooshian et al. (1983,
1993), who used a maximum likelihood estimator func-
tion for the heteroscedastic error case. The main point
of their approach weighs the squared residuals by the
actual observations. In other words, they combine the
squared error and the relative error.

DESIGN OF TEST EXPERIMENTS

The three techniques adopted in this study (LRA, NRA, and
ANN) are evaluated using six testing experiments to compare
the results in terms of robustness of accuracy, convenience,
and ease of use. The difference among various test experi-
ments is mainly in the input structure for the purpose of in-
vestigating its impact on the output accuracy and determining
the most appropriate one for the case of the Red River.

• Experiment 1—Five independent variables are used as
inputs with the first 10 years (1948–1957) for testing the
ANN and verifying the regression models and the last 40
years (1958–1997) for training the ANN and calibrating
the regression models.

• Experiment 2—Same as Experiment 1 with the extreme
observation of year 1997 removed from the training data
set. This means that the four models of the three tech-
niques will not see the extreme value during training
while another extreme (year 1950) is still part of the test-
ing/verification data set.

• Experiment 3—All odd years (1949, 1951, . . . , 1997)
are considered for training the models, whereas all even
years (1948, 1950, . . . , 1996) are kept for testing the
models. In this case the length of training and testing data
sets is equal—25 years. This experimental design cap-
tures the effect of any land use change in the basin in
training and testing data sets.

• Experiment 4—Two variables only, total precipitation
and antecedent precipitation index, are considered as in-
puts to the different models. Training and testing data set
sizes are the same as in Experiment 1.

• Experiment 5—Same as Experiment 4 with the exception
of using only total precipitation as the input.

• Experiment 6—Ten years (1948–1957) are considered
for training, and the remaining 40 years (1958–1997) are
426 / JOURNAL OF HYDROLOGIC ENGINEERING / OCTOBER 2000
TABLE 4. Performance of Different Models According to
PMSE

Experiment
(1)

LRA
(2)

NRA
Model 1

(3)
ANN
(4)

ANN
configuration

(5)

1 0.042 0.016 0.011 (5-1-1)
2 0.125 0.018 0.086 (5-3-1)
3 0.069 0.074 0.036 (5-5-1)
4 0.032 0.029 0.022 (2-1-1)
5 0.035 0.022 0.02 (1-1-1)
6 0.087 0.833 0.055 (5-1-1)

TABLE 3. Rank of Different Models Using MSE and MRE

Experi-
ment
(1)

Rank According to MSE

1
(2)

2
(3)

3
(4)

Rank According to MRE

1
(5)

2
(6)

3
(7)

1 NRA ANN LRA ANN NRA LRA
2 NRA ANN LRA ANN NRA LRA
3 ANN NRA LRA NRA LRA ANN
4 ANN NRA LRA ANN LRA NRA
5 NRA ANN LRA LRA ANN NRA
6 ANN LRA NRA ANN NRA LRA

considered for testing the models. The last experiment in-
vestigates the sensitivity of the different techniques to
shorter training data sets.

Although the experiments suggested here should handle a wide
range of possible input alternatives, they are not exhaustive.

RESULTS AND DISCUSSION

The performance of the identified models is first evaluated
based on the results of verification (testing) using MSE and
MRE. The results are summarized in Table 2 and discussed
below.

Table 2 shows that Model 2 of the NRA is dominated by
other models in all experiments. Throughout the six experi-
ments, it seems that for the problem under consideration the
multiplicative NRA model in (2) performs better than the
model in (3). Therefore, the NRA model in (3) is dropped from
any further analysis or discussion. The discussion on the rank
of the performance of the three models in different experi-
ments based on MSE and MRE is condensed and depicted in
Table 3. This table shows the contradictory rank of different
models according to MSE and MRE in different experiments.
Complexity of the ranking process can be reduced by com-
bining the MSE and the MRE in one statistic, PMSE. Table 4
presents the values of PMSE for the identified models in each
of the six experiments. It should be noted that each experi-
mental test data set results in a unique configuration of the
ANN model. Table 5 also provides the rank of the different
models according to PMSE. For each experiment only one



TABLE 5. Rank of Different Models Using PMSE

Experiment
(1)

Rank According to PMSE

1
(2)

2
(3)

3
(4)

1 ANN NRA LRA
2 NRA ANN LRA
3 ANN LRA NRA
4 ANN NRA LRA
5 ANN NRA LRA
6 ANN LRA NRA

rank is provided. In five out of six experiments, the ANN
models show better performance than NRA and LRA. Thus,
PMSE helps achieve more conclusive results.

SUMMARY AND CONCLUSIONS

A variety of models based on the concepts and techniques
of ANN, LRA, and NRA have been developed and tested on
six experiments using the Red River data. The essential dif-
ference among various experimental test data sets is mainly in
the model input structures. The results of most of the six ex-
perimental tests indicate that the performance of ANN-based
models is better but dependent on the data input structure.
During the training phase, if the data set does not encompass
entire data patterns (i.e., questionable quality), then one needs
to exercise caution in the use of ANN-based models. In such
cases, the use of other models such as NRA may prove more
fruitful. However, the ANN-based models show better predic-
tion ability than the NRA models for cases where unsufficient
amount of data is encountered during the training phase. In
cases of small training data sets, even the LRA models (with
their large ability to generalize) may prove suitable candidates
for consideration.

The ANN-based models with only one hidden layer are eas-
ier to configure and require less effort than the other corre-
sponding NRA-based models. The necessity of preformulation
of the NRA-based models limits the practical utility of such
models. ANN models are not recommended as a single ap-
proach for the runoff prediction. As a reference for compari-
son, use of other traditional techniques is necessary.

The inadequacy of the MSE and the MRE as measures of
the level of model performance has been demonstrated. To
overcome the inadequacy of MSE and MRE, a new statistical
measure, PMSE, is developed. The relative efficacy of the
PMSE, as a measure of model performance, is demonstrated.

APPENDIX I. DATA USED FOR ANALYSIS

Runoff (Ro): Spring runoff volume expressed in centimeters
over the drainage area of 61,000 km2.

Precipitation (Tot. Pcpn): Basin precipitation in centimeters
from November 1 of the preceding year through the spring
runoff period of the current year.

Antecedent precipitation index (Api ): Computed as the sum
of weighted monthly basin precipitations for May to Octo-
ber of the preceding year using the following weighting fac-
tors: May—0.07, June—0.08, July—0.12, August—0.18,
September—0.25, and October—0.30.

Melt index (Mi ): Expressed as the average number of degree-
days per day, in degrees Celsius above a base of 22, at
Grand Forks, N. Dak., during the active snowmelt period.

Winter temperature index (Wti ): Computed as the mean of
average monthly temperatures, in degrees Celsius, for De-
cember, January, and February at Grand Forks, N. Dak.
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