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Abstract: This study presents an output updating procedure for the 
deterministic physically-based model of the Upper Thames River watershed, 
Ontario, Canada. In addition to streamflow and rainfall, this procedure uses as 
inputs meteorological variables not employed in the model calibration. The 
main hydrological processes involved in transformation of rainfall into runoff 
are mathematically expressed using a set of key variables. Therefore, some of 
the available meteorological variables may be of limited value during the 
calibration that predominantly relies on a large range of flow hydrographs for 
obtaining the optimum state variables and parameters of the model. In  
this study, the Bayesian regularisation neural network technique is coupled 
with the physically-based model to provide more accurate flood flow 
simulation for a wide range of flood flow event hydrographs pertinent to the 
hydrometeorological environment. The artificial neural network is capable of 
generating good generalisation results after complex input-output mapping. 
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1 Introduction 

The hydrometeorological observations and a rainfall-runoff model are the most 
fundamental elements of any study of streamflow prediction in a watershed. For example, 
they provide flood warning messages that are of high importance for the safety of people 
and protection of property. Hydrometeorological observations include streamflow, 
precipitation, and various meteorological data. The rainfall-runoff model may use some 
of the hydrometeorological data in the simulation of hydrological processes to produce 
flow hydrograph as output. Rainfall-runoff modelling can be done using either an 
empirical, conceptual or physically-based model. According to the spatial distribution of 
hydrologic parameters, these models can be lumped, semi-distributed or distributed 
(Beven, 2001; Cunderlik, 2003). In most studies, the deterministic physically-based 
models use mathematical representations to describe the selected hydrological processes, 
as well as a number of state variables and also parameters of the model. Model 
calibration, using a large number of time series observation data provides values for 
model parameters. However, models may not be ideal for accurately simulating flow for 
a wide range of hydrometeorological conditions. Furthermore, the output error(s) from 
gauged location(s) of physically-based model can cause a significant input error(s) at 
ungauged location(s). This output error may result from the model limitations: 

1 model structure 

2 time variation 

3 insufficient data; and other factors. 

The output error of a deterministic physically-based model can be reduced by 
implementing an updating procedure based on the artificial neural network (ANN) 
technique. Neural network is a sophisticated technique, capable of learning the 
relationships between inputs and outputs without analysing the internal structure of the 
hydrological processes. 

The neural network technique is widely used in hydraulics and hydrology. A few 
studies have been conducted to review the theory and applications of the ANN in 
hydrology (ASCE, 2000; Govindaraju and Rao, 2000). Previous studies have 
demonstrated that ANNs are appropriate for modelling non-linear relationships of 
rainfall-runoff processes (Zealand et al., 1999; Lekkas et al., 2004; Rajurkar et al,. 2004; 
Ahmad and Simonovic, 2005; Cullmann et al., 2006); stream-flow forecasting (Anctil  
et al., 2004; Moradkhani et al., 2004); river stage forecasting (Thirumalaiah and Deo, 
1998; Bhattacharya and Solomatine, 2000; Liong et al., 2000); evapotranspiration 
prediction (Eslamian et al., 2012). The research has been reported to include 
meteorological data (such as, air temperature, snowmelt, relative humidity, 
evapotranspiration, wind direction, etc.) to improve the ANN prediction (Poff et al., 
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1996; Anctil and Rat, 2005; Jain and Srinivasulu, 2006; Wardah et al., 2008; Aytek et al., 
2008). There are many different updating approaches available in the hydrologic 
literatures that are most appropriate for the study of rainfall-runoff processes in the 
gauged watersheds (Xiong and O’Connor, 2002; Anctil et al., 2003; Abebe and Price, 
2004; Xiong et al., 2004; Goswami et al., 2005; Abrahart and See, 2007). It was found 
that various input-output combinations of observations and/or simulated results used in 
these procedures could reduce the associated uncertainty, and improve the overall 
efficiency of the hydrological model. The most common updating approaches include: 
use of optimisation methods in the ANN weight updates; use of output error of a 
physically-based model in the streamflow forecasting; emulation of hydrological 
knowledge in a numerical model; and the development of a hybrid system coupled by 
two (or more) linear and/or non-linear models. 

In the presented work, a new updating approach is introduced to obtain the most 
accurate streamflow values at the ungauged sites, through improving the computed 
streamflow of the hydrologic model at the gauged sites with the assistance of ANN model 
using available additional hyrometeorological. The results of the study could be helpful 
in the reduction of flood damages and could allow for safer operation of reservoirs and 
more effective water resources management. 

The paper starts with the presentation of a model output updating methodology in the 
next section. The implementation of the methodology to the Upper Thames River basin 
follows. The paper ends with the presentation of results and conclusions obtained from 
the study. 

2 A model output updating methodology 

The calibration of hydrologic model, which consists of a number of gauged and ungauged 
sub-watersheds, is a time-consuming process. It can be done automatically and/or 
manually. The model calibration process is conducted manually by Cunderlik and 
Simonovic (2004). The parameters of the model obtained in that way did not make 
physical sense and therefore, a manual procedure was used to arrive at the model 
parameters. The calibration started with the most upstream sub-watersheds first and then 
proceeded downstream. As the process moved downstream numerous iterations were 
required to re-calibrate the upstream sub-watersheds. 

The study presented in this paper introduces a new procedure based on the ANN 
approach for reducing the output error of a deterministic physically-based model. One of 
the main advantages of this procedure is the inclusion of additional real-time data on the 
hydrometeorological environment. While the additional real-time data is not used in the 
model calibration, it is used by ANN model to provide more accurate flow values for a 
wide range of flow hydrographs. Other advantages of this procedure are that it requires 
less computation time and provides more accurate updates for the output flow of the 
physically-based model for both recent and future flow hydrographs. Furthermore, the 
output flow at the ungauged streamflow sites can be improved using the updated flow at 
the corresponding gauged streamflow sites. The information on the updated flow 
hydrographs at the gauged and/or ungauged streamflow sites can be used in water 
resources management. For example, the information on flow can be used to reduce the 
flood damages, and allow for safer operation of reservoirs and other water resources 
infrastructure. 
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The overall procedure of output updating of the physically-based model, as illustrated 
in Figure 1, is presented next. First, the physically-based model is run by using input 
variables to compute the flow values. Next, the neural network model, ANN1, is applied 
by using available hydrometeorological observation data to improve the output flow of 
the physically-based model for the selected gauged streamflow sites in a watershed. The 
improved flows of the gauged sites as well as the hydrometeorological data are then used 
by the second neural network model, ANN2, to update the computed flow values of the 
physically-based model for the corresponding ungauged sites. The steps in the proposed 
methodology based on the computational engine of the HEC-HMS (USACE, 2000) are 
summarised as follows: 

1 Determine the computed streamflow at the gauged site of the HEC-HMS model, 
QgHMS(t). 

2 Estimate the improved streamflow(s) at the gauged site(s), iQgHMS(t), using the neural 
network model (ANN1), as given by: 

( ) ( )gHMS gANNiQ t Q t=  (1) 

( 1);  ( 1);  
( )  

and other available meteorological data
o

gANN
QgHMS t Q t

Q t f
− −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2) 

where in the training process the ANN1 model’s target output is the observed 
streamflow of the gauged site, Qo(t). The computed streamflow (QgHMS(t)) is 
improved with the assistance of the ANN approach. The simulated flow generated 
by the ANN model (ANN1), QgANN(t) using equation (2), becomes the improved 
streamflow at the gauged site, iQgHMS(t) according to equation (1). The previous 
and/or recent HEC-HMS computed streamflow of gauged site, observed streamflow, 
mean-areal rainfall, and additional meteorological variables are used by the ANN 
model (ANN1) in the output updating procedure. 

3 Improve the model calculated streamflow values at the corresponding ungauged 
sites, by using the neural network model (ANN2), as follows: 

( ) ( )ugHMS ugANNiQ t Q t=  (3) 

,
1

( );  ( 1);  ( 1);
( ) ,  1, 2, ,

 and other available meteorological data

G

gHMS i ugHMS o
ugANN i

Q t Q t Q t
Q t f i G=

⎛ ⎞
− −⎜ ⎟

= =⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ……  (4) 

where f is the ANN function of input-output datasets, QgHMS(t) and QugHMS(t) are the 
HEC-HMS computed flows at the gauged and ungauged sites, respectively; Qo(t – 1) 
is an average observed flow at the gauged site; iQgHMS(t) is the improved 
streamflow(s) from the gauged site(s) for G gauging sites; iQugHMS(t) is the improved 
streamflow at the ungauged site; and t = 1 to N is the time step. The ANN2 model’s 
target output in the training process is QugHMS(t). 

4 Test the ANN2 model with the improved streamflow of gauged site(s), iQgHMS(t) 
obtained from equations (1) and (2), instead of using the QgHMS,i(t) in equation (4). 
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The ANN simulated streamflow, QugANN(t), is then compared with the streamflow 
observation from the ungauged site. 

Figure 1  Schematic diagram of the output updating procedure 
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In the next section, the Levenberg-Marquardt (LM) algorithm with Bayesian 
regularisation, and the model evaluation criteria used with the presented methodology are 
discussed in detail. 

2.1 The LM algorithm with Bayesian regularisation 

The Bayesian regularisation neural network is a more recent technique that can ensure 
accurate prediction of flow values, while automatically preventing the overfitting and 
underfitting when the network is tested with unknown inputs. Other advantage of this 
approach is that during training it applies an early stopping procedure as soon as the 
overtraining signal starts to appear. The overtraining signal can be observed when the 
trained network is tested with an unknown dataset and the obtained output has a higher 
accuracy. The Bayesian regularisation uses either training, or validation or both datasets 
to learn all ranges of possible datasets, which is especially valuable when the size of the 
dataset is small. In many examples, a multilayer feed-forward network with the LM 
algorithm has proven to be faster and more effective in finding optimal results (Masters, 
1995; Bertsekas and Tsitsiklis, 1996; Tan and Van Cauwenberghe, 1999; Anctil et al., 
2003). According to Hagan and Menhaj (1994), the LM algorithm belongs to the 
category of second-order non-linear optimisation techniques. The performance of ANN 
model in this study is found superior when the Bayesian regularisation is used with LM 
algorithm in training the multilayer feed-forward network (Foresee and Hagan, 1997; 
Anctil et al., 2003; Parent et al., 2008). This study has applied a multilayer feed-forward 
network with a single hidden sigmoid and linear output layer. 

In the Bayesian framework, a term that consists of mean of the sum of squares of the 
network weights and biases, Fw, is automatically added, to the typical error function (the 
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mean sum of squares of the network errors), Fe, to improve generalisation, as given in the 
following (MacKay, 1992): 

2

1 1

N M

e w ii
i i

F βF αF β e α W
= =

= + = +∑ ∑  (5) 

where F is the error function; e, is the network error, the difference between the desired 
flow, Qo, and the network output, QgANN or QugANN for N number of training inputs; W is 
the network weight and bias for M total number of weights; α and β are the error function 
parameters. The algorithm steps for training the ANN model are as follows: 

1 Initialise the error function parameters, α and β, and the weights (Nguyen and 
Widrow, 1990). 

2 Present all inputs of size N to the network, and compute the network errors, e. Then, 
compute the error function, F, over all inputs using equation (5). 

3 Take one step of the LM algorithm to minimise the error function. 

4 Compute the Hessian matrix, H, and the gradient, g, using the Jacobian matrix, J, 
that contains the first derivatives of the network errors with respect to the weights 
and biases, as follows: 

2

2
 TF

w
∂

= =
∂

H J J  (6) 

TF e
w w
∂ ∂

= = =
∂ ∂∑g e J e  (7) 

5 Compute the parameters with new values, α = γ / (2Fw) and β = (N – γ) / (2Fe), using 
the value of the effective number of parameters γ = N – 2αtr(H)–1. 

6 Solve the ANN weight, using the LM update given in the following: 

1
1 D [ ]k k k μ −
+ = − = − +W W W W H I g  (8) 

where ΔW is the updated weight, Wk is the weight matrix at training iteration (k), I 
is the identity matrix, and µ is a scalar that controls the learning process. 

7 Recompute the error function, Fk+1, using equation (5) and the new weight Wk+1 
obtained in step 6. If the new error is reduced (Fk+1 < Fk), then LM algorithm 
decreases the µ by µ–, the new weight Wk+1 is calculated, and the process starts 
again from step 2; otherwise, the algorithm increases the µ by µ+, and the weight of 
ΔW from step 6 is recalculated; The default values of µ+ = 10 and µ– = 0.1 are 
usually used. 

8 The training procedure is considered to converge when the effective number of 
parameters, γ, has converged, or the error is reduced up to some predefined error 
goal. 
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2.2 Model evaluation criteria 

The performance predictions of the ANN model and physically-based model at the 
gauged streamflow location are evaluated for training, validation and testing datasets. 
The general performance of ANN predictions with is evaluated using the correlation 
coefficient of linear regression, R, in equation (9), between computed and observed 
streamflows. A high number of R = 1.0 means perfect statistical correlation and a low 
number of R = 0.0 means there is no correlation at all. The success measurement of 
sensitivity analysis for choosing the input variables is based on the root mean square error 
(RMSE), given by equation (10), which measures the level of fitness between the ANN 
model output and the observed data. This measure ignores the importance of low and 
high flows (Coulibaly et al., 2001). The peak flow criterion (PFC) in equation (11), is 
used to identify the more accurate ANN model for flood flow simulation. The mean 
absolute error (MAE), given by equation (12), measures the average of the absolute error 
value (the difference between the observed data and the model predicted output). The 
MAE is similar to the RMSE, but they differ in their weighting of the errors. Lower 
values of RMSE, PFC and MAE indicate a good model fit to the observation data. The 
correlation between the predicted hydrograph and the observed hydrograph is evaluated 
using the Nash-Sutcliffe coefficient of efficiency (Nash and Sutcliffe, 1970), EI, given by 
equation (13), which ranges from negative infinity to 1.0. An EI value of 1.0 means a 
perfect agreement between the observed and predicted hydrographs. The EI value equal 
to, or less than 0.0, indicates that the one-parameter ‘no knowledge’ model is better than 
simulation model output. In this case, the observed hydrograph is suggested as a better 
predictor than the simulated one. The flow volume error (FVE), given by equation (14), 
only considers the computed flow volume and does not account for the magnitude or 
timing of the peak flow. The 0.0 value of FVE means a perfect agreement of flow 
volume. Conversely, a negative value of FVE means the simulated flow is slightly under 
predicted in comparison to the volume of observed flow. Finally, both observed and 
predicted flow hydrographs for the testing dataset are plotted for visual evaluation. 

( )( )

( ) ( )
1

22

1

ˆ ˆ

R
ˆ ˆ

N

t ave t ave
t
N

t ave t ave
t

Q Q Q Q

Q Q Q Q

=

=

− −

=

− −

∑

∑
 (9) 

( )
1/2

2

1

1 ˆRMSE
N

t t
t

Q Q
N =

⎡ ⎤
= −⎢ ⎥
⎢ ⎥⎣ ⎦
∑  (10) 

( )
1/4

2
2

1
1/2

2

1

ˆ

PFC

NP

t t t
t

NP

t
t

Q Q Q

Q

=

=

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠=
⎛ ⎞
⎜ ⎟⎜ ⎟
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Q Q

Q

= =

=

−

=
∑ ∑

∑
 (14) 

where Q̂  is the ANN predicted streamflow for the gauged or ungauged location, Q is the 
observed streamflow or HEC-HMS computed flow for the ungauged location at t, recent 
time step, Qave is the average streamflow; N is the number of observations, and NP is the 
number of peak flows greater than one-third of the mean peak flow. 

3 Case study 

3.1 The input data for output updating 

The proposed methodology for output updating of the physically-based model is 
presented using the study of the Upper Thames River watershed, located in southwestern 
Ontario, Canada. The watershed is comprised of four counties: Perth, Middlesex, Huron 
and Oxford. This study uses five events during the periods 2000 and 2004. The hourly 
meteorological data from the nearest monitoring sites, such as Stratford (solar radiation), 
Wildwood Dam (evaporation) and London (air temperature, wind speed, wind direction, 
air station pressure, visibility, and humidity) are used in the updating procedure. These 
hourly historic datasets are obtained from the Environment Canada (EC) and the Upper 
Thames River Conservation Authority (UTRCA). One gauged streamflow location,  
St. Marys, is selected to illustrate the methodology for output updating of the HEC-HMS 
event hydrologic model of the Upper Thames River watershed. The improved streamflow 
from this gauged site is used in the ANN model to determine the streamflow value for the 
ungauged site, Plover Mills (see Figure 2). The St. Marys SG is a gauged site, and Plover 
Mills SG in Figure 2 is considered as an ungauged site. Available observations at Plover 
Mills SG are used at the end to check the quality of streamflow forecast for ungauged 
sites. In other words, we artificially treated the Plover Mills Sg as ungauged. Data and 
analyses for other stations in the watershed are available from the first author upon 
request. 

A more detailed description of the Upper Thames River watershed and the  
HEC-HMS hydrologic model follows. 
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Figure 2 HEC-HMS event hydrologic model of the Upper Thames River watershed  
(see online version for colours) 

 

3.1.1 Description of the Upper Thames River watershed 

There are two main tributaries of the Thames River: the North branch (1,750 km2) and 
the East branch (1,360 km2). They converge at forks near the centre of the city of 
London. The Thames River then flows westwards and exits the outlet of watershed near 
Byron. The watershed receives 1,000 mm of annual precipitation with an estimated 
annual discharge of 35.9 m3/s (measured at Byron station). About 60% of the annual 
precipitation is lost through evaporation and/or evapotranspiration, accumulated water in 
ponds and wetlands, or infiltration. The slope at the upper reaches of the Thames basin is 
close to 1.9 m/km and much flatter at lower reaches – less than 0.2 m/km (Wilcox et al., 
1998). The Thames River flows are attenuated by three major reservoirs, Wildwood, 
Fanshawe and Pittock, all built in the mid-1960s for the purpose of flood management. 
Since then, the purposes of reservoirs have expanded to low flow maintenance and 
recreation. The Upper Thames River watershed has historically experienced severe 
flooding, going as far back as the late 1700s. By the late 1930s and early 1940s, flood 
events forced the formation of the Conservation Authorities in 1946 to provide solution 
for problems associated with flooding. The dates of more recent floods in this watershed 
include March 1977, September 1986, July 2000, April 2008, and December 2008 
(UTRCA, 2009). Flooding most frequently occurs after the spring snow melts and 
summer storms (Prodanovic and Simonovic, 2006). 
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Figure 3 The event hydrologic model structure 
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3.1.2 The HEC-HMS event hydrologic model 

The rainfall-runoff model for the Upper Thames River watershed was originally 
developed using the Hydrologic Modeling System (HEC-HMS) version 2.2.2 (USACE, 
2000), a product of the Hydrologic Engineering Center within the US Army Corps  
of Engineers. The details of this work can be found in the report by Cunderlik  
and Simonovic (2004). The computational engine of HEC-HMS model was later 
reprogrammed in the Java programming language to speed up the process for performing 
a large number of simulations. The HEC-HMS hydrologic model for the Upper Thames 
River watershed, as illustrated in Figure 2, consists of thirty three sub-watersheds, twenty 
one river reaches, and three reservoirs. The hydrologic model is divided into six main 
components, each representing the different hydrologic process occurring in the 
watershed, as shown in Figure 3. In this study, the calibrated HEC-HMS hydrologic 
model in the Java programming language is used. First, the meteorologic component is 
used to provide spatially and temporally distributed rainfall over the watershed. The 
rainfall is then used as the input data in the calibrated HEC-HMS model for estimating 
the streamflow at the watershed outlet. The rainwater infiltrates either a previous surface 
or an impervious surface. The rainfall loss component accounts for the water losses 
through interception, infiltration, evaporation and transpiration, for rainfall from the 
previous surface. The effective rainfall from the loss component contributes to direct 
runoff and to groundwater flow in aquifers. Rainfall from the impervious surface is used 
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by the direct runoff component to generate overland flow. The water moisture movement 
in aquifers is modelled by the baseflow component. The overland flow and baseflow are 
then combined to produce streamflow. The river routing component uses the streamflow 
as input to propagate the flood wave along a river channel. Finally, the effect of hydraulic 
facilities (reservoirs, and detention basins) and natural depressions is reproduced by the 
reservoir component. 

3.2 The neural network model 

The ANN input data used in the network training include the HEC-HMS computed flood 
flow of gauged site in the previous/current time interval and/or the HEC-HMS computed 
flood flow of ungauged site in the previous time interval, average flood flow in the 
previous time interval, total rainfall, and meteorological variables (such as average 
visibility, average relative humidity, average wind speed, average solar radiation, average 
air station pressure, average evaporation, average air temperature, and average wind 
direction) in the current and previous time intervals. The autocorrelation and  
cross-correlation analyses are performed on the ANN input data, to determine the ANN 
configuration models. For example, Table 1 shows the best correlation coefficient results 
(with lag-times from 1 to 10 hours) for St. Marys, Mitchell and Stratford flood flows, 
total rainfall, and other meteorological variables. The correlation functions are computed 
with 95% confidence interval. 
Table 1 The autocorrelation (A) and cross-correlation (X) results for St. Marys flood flow 

Lags X(Ws) X(Sr) X(Wd) X(H) X(Sp) X(T) X(V) X(E) 

0 –0.01 –0.10 0.13 0.20 –0.32 0.04 –0.18 –0.16 
1 –0.02 –0.10 0.12 0.21 –0.32 0.05 –0.19 –0.16 
2 –0.01 –0.10 0.11 0.21 –0.32 0.06 –0.20 –0.16 
Lags X(R) A(QSm) A(QM) A(QS)     
0 0.24 1.00 0.85 0.87  
1 0.23 0.99 0.85 0.91  
2 0.23 0.98 0.85 0.93  
3 0.22 0.95 0.84 0.94  
4 0.20 0.92 0.82 0.94  
5 0.19 0.88 0.81 0.92  
6 0.17 0.84 0.78 0.90  
7 0.15 0.80 0.76 0.86  
8 0.12 0.76 0.73 0.83  
9 0.10 0.72 0.70 0.79  
10 0.07 0.68 0.66 0.76  

Notes: Where QHg and QHug are the computed flood flow of HEC-HMS for St. Marys 
gauged site and Plover Mills ungauged site, respectively; QSm, QM, and QS are 
the average flows (m3/s) at St. Marys, Mitchell, and Stratford stations, 
respectively; R is the total rainfall (mm); V is the hourly average visibility (km); H 
is the hourly average relative humidity (%); Ws is the hourly average wind speed 
(km/h); Sr is the hourly average solar radiation (MJ m–2 hour–1); Sp is the hourly 
average air station pressure (kPa); E is the hourly average evaporation (mm hour–

1); T is the hourly average air temperature (°C); Wd is the hourly average wind 
direction (10’s Deg); and t is the recent time and delayed hourly eight times t – 1, t 
– 2, ……, t – 6 and t – 8. 
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From Table 1, the St. Mary, Mitchell and Stratford flows with lag-times of 1- to 2-hour 
(QSmt–1, QSmt–2, QMt–1, QMt–2, QSt–1 and QSt–2); the rainfall with lag-times of 1- to 8-hour 
(Rt–1, Rt–2, ….., Rt–7 and Rt–8); and most of other meteorological variables with lag-time of 
1-hour (e.g., Srt–1) are considered as potential candidates correlated with the recent hour 
St. Marys flow forecast (QSmt). The development of ANN input configuration models, is 
presented in the next section. 

Based on the results from correlation analysis, different hourly neural network input 
models are developed that are highly correlated with the recent observed flood flow, as 
summarised in Table 2 (for St. Marys station selected as an example). Sensitivity 
analyses are conducted for these input models to determine the optimal input 
configuration and number of hidden nodes, using the LM algorithm with Bayesian 
regularisation approach. Tables 3 and 4 show the datasets used in the network training for 
St. Marys and Plover Mills stations. From Tables 2 and 5 for St. Marys station, the input 
configuration M20 with visibility and station pressure variables has the minimum RMSE 
value of 1.54 m3/s when compared with the model configurations M21 to M26 using 
other meteorological variables. In the case of M21 to M26, the analyses consider 
visibility, humidity, wind speed, solar radiation, air station pressure, evaporation, air 
temperature and wind direction. These variables are not used in the output updating 
process. Multilayer feed-forward networks with a range of 5 to 15 hidden nodes are 
successively trained, and the best performance with the test dataset is obtained within a 
pool of 25 repetitions. This implies that the selected configuration is among the top 14% 
of the distribution of all possible configurations, with 95% confidence, according to Iyer 
and Rhinehart (1999). Note that before training, all mean and standard deviation values 
of the input configurations are constantly normalised. The datasets used for the training, 
validation and testing a network, as given in Tables 3 and 4 for St. Marys and Plover 
Mills stations are selected by implementing data cross-validation, extreme data partition, 
and trial and error methods. The results of sensitivity analyses for the training dataset are 
given in Table 5 only for the St. Marys station. This result suggests improvement in the 
RMSE value of the trained network when additional meteorological data is used. For 
example, for St. Marys station, the optimal input configuration M20 with 15 input 
variables and nine hidden nodes offers the minimum RMSE value of 1.54 m3/s for a 
given training dataset. For Plover Mills station (the results are not shown here) the 
minimum RMSE value of 1.02 m3/s is obtained using the training dataset with 17 input 
variables and 13 hidden nodes. The best ANN input configurations are presented in 
equations (15) and (16) for St. Marys and Plover Mills stations, respectively. 
St. Marys station: 

 

( 1),  ( 1),  ( 1),  ( 1),
( ) f ( 2),  ( 1),  ( 2),  ( 3), ( 4),

( 5), ( 6),  ( 7),  ( 8),  ( 1) and ( 1)

QHg t QSm t QS t QM t
Q t QM t R t R t R t R t

R t R t R t R t V t Sp t

− − − −⎛ ⎞
⎜ ⎟= − − − − −⎜ ⎟
⎜ ⎟− − − − − −⎝ ⎠

 (15) 

Plover Mills station: 

( ),  ( 1),  ( 2),  ( 3),  ( 4),
( ) f ( 2),  ( 3),  ( 4),  ( 5), ( 6), ( 7),  ( 8),

 ( 9), ( 10),  ( 11),  ( 12),  ( 13)

QHg t QHug t QHug t QHug t QHug t
Q t R t R t R t R t R t R t R t

R t R t R t R t R t

− − − −⎛ ⎞
⎜ ⎟= − − − − − − −⎜ ⎟
⎜ ⎟− − − − −⎝ ⎠

 (16) 

These trained networks are validated with unknown datasets. 



   

 

   

   
 

   

   

 

   

   318 P. Jeevaragagam and S.P. Simonovic    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 ANN input configuration models for the St. Marys station 

M1: QHgt–1, QSmt–1 and QSmt–2 
M2: QHgt–1, QSmt–1 and QMt–1 
M3: QHgt–1, QSmt–1 and QSt–1 
M4: QHgt–1, QSmt–1, QSt–1 and QSt–2 
M5: QHgt–1, QSmt–1, QSt–1 and QMt–1 
M6: QHgt–1, QSmt–1, QSt–1, QMt–1 and QMt–2 
M7: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7 and Rt–8 
M8: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6 and Rt–7 
M9: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5 and Rt–6 
M10: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4 and Rt–5 
M11: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3 and Rt–4 
M12: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7, Rt–8 and Tt–1 
M13: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7, Rt–8 and Et–1 
M14: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7, Rt–8 and Srt–1 
M15: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7, Rt–8 and Wst–1 
M16: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7, Rt–8 and Wdt–1 
M17: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7, Rt–8 and Vt–1 
M18: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7, Rt–8 and Spt–1 
M19: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, Rt–2, Rt–3, Rt–4, Rt–5, Rt–6, Rt–7, Rt–8 and Ht–1 
M20: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, …, Rt–7, Rt–8, Vt–1 and Spt–1 
M21: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, …, Rt–7, Rt–8, Vt–1, Spt–1 and Ht–1 
M22: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, …, Rt–7, Rt–8, Vt–1, Spt–1, Ht–1 and Et–1 
M23: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, …, Rt–7, Rt–8, Vt–1, Spt–1, Ht–1, Et–1 and Wdt–1 
M24: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, …, Rt–7, Rt–8, Vt–1, Spt–1, Ht–1, Et–1, Wdt–1 and 

Srt–1 
M25: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, …, Rt–7, Rt–8, Vt–1, Spt–1, Ht–1, Et–1, Wdt–1, Srt–1 

and Tt–1 
M26: QHgt–1, QSmt–1, QSt–1, QMt–1, QMt–2, Rt–1, …, Rt–7, Rt–8, Vt–1, Spt–1, Ht–1, Et–1, Wdt–1, Srt–1, 

Tt–1 and Wst–1 

Table 3 The comparison of performance predictions between the ANN model and the  
HEC-HMS model for St. Marys gauged site 

Dataset and 
period 

Mean flow 
(m3/s) 

Simulated 
model 

RMSE 
(m3/s) FVE MAE 

(m3/s) EI PFC R 

HMS 43.566 0.021 26.516 0.777 0.144 0.888 Training (July and 
August 2000; 
May 2004) 

70.91 
ANN 1.591 0.001 0.859 1.000 0.029 1.000 

HMS 25.173 –0.148 13.325 0.420 0.336 0.951 Validation 
(September 2000) 

38.34 
ANN 1.482 –0.006 0.763 0.998 0.076 0.999 
HMS 39.654 –0.895 28.608 –1.844 0.371 0.847 Test (June 2000) 30.95 
ANN 1.686 –0.010 0.992 0.995 0.076 0.998 
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Table 4 The performance predictions of the ANN model for Plover Mills ungauged site 

Dataset and period 
Mean 
flow 

(m3/s) 

RMSE 
(m3/s) FVE MAE 

(m3/s) EI PFC R 

Training (July and August 2000; 
May 2004) 

94.31 0.537 –0.001 0.333 1.000 0.012 1.000 

Validation (September 2000) 61.79 0.780 –0.002 0.343 1.000 0.036 1.000 
Test (June 2000) – HEC-HMS 
computed flow 

60.44 29.470 0.296 20.171 0.595 0.268 0.888 

Test (June 2000) – observed 
flow 

42.74 1.385 0.004 0.617 0.998 0.057 0.999 

Table 5 The RMSE (m3/s) performance results of the ANN network configuration sensitivity 
analysis for St. Mary station 

Number of hidden nodes 
Models 

5 6 7 8 9 10 11 12 13 14 15 
M1 4.72 4.50 4.05 4.47 4.04 4.24 3.86 3.96 4.29 4.09 3.95 
M2 8.55 8.33 8.81 8.51 8.61 8.69 8.60 8.07 8.72 8.74 8.75 
M3 4.05 3.72 4.36 4.26 3.91 4.49 4.52 3.97 4.21 4.35 3.72 
M4 4.21 3.27 3.95 3.52 3.61 4.00 3.92 4.58 3.81 4.49 3.74 
M5 3.19 3.09 3.28 4.94 3.03 3.37 3.60 3.69 3.51 3.39 3.52 
M6 3.33 3.05 3.57 3.20 2.77 3.29 2.67 3.07 3.34 3.25 3.42 
M7 2.30 3.51 1.74 1.76 2.23 1.84 1.69 2.45 2.22 1.94 1.82 
M8 1.97 2.27 1.92 2.04 1.73 2.29 2.01 2.40 2.47 2.06 1.76 
M9 2.58 2.33 2.01 2.17 2.12 2.57 2.13 2.42 2.54 2.11 2.45 
M10 2.89 2.59 2.78 2.77 2.46 2.52 2.52 2.50 3.01 2.56 3.31 
M11 2.55 2.50 2.89 2.53 2.55 2.19 2.63 2.33 2.34 2.43 2.54 
M12 2.17 1.64 3.12 1.63 1.84 1.93 2.34 2.46 1.94 1.92 2.21 
M13 2.18 2.26 2.39 2.31 2.61 2.50 2.93 2.25 2.56 3.45 3.06 
M14 1.78 2.17 1.70 2.11 2.31 2.04 1.71 1.99 2.32 1.73 3.00 
M15 2.24 2.34 1.75 1.74 2.78 1.86 3.40 3.07 1.86 2.04 1.80 
M16 1.87 1.87 1.78 1.91 2.70 2.13 1.85 2.14 1.97 2.11 1.89 
M17 1.68 1.63 1.60 2.08 1.92 2.82 1.65 1.78 2.14 1.81 1.86 
M18 2.18 1.91 1.98 2.18 2.37 1.72 1.66 2.21 2.68 1.85 2.10 
M19 2.08 1.84 1.81 1.81 2.30 1.77 1.85 2.51 1.75 2.52 2.90 
M20 1.95 1.73 1.57 1.90 1.54 2.47 1.74 3.76 2.52 1.87 2.23 
M21 1.57 1.66 3.09 1.74 1.65 1.77 1.99 1.87 3.70 2.22 2.04 
M22 2.48 2.41 2.27 2.69 3.63 2.91 2.28 3.88 2.37 2.45 2.33 
M23 2.28 2.28 2.96 2.32 2.59 2.33 2.56 2.16 2.23 3.13 2.71 
M24 2.13 2.34 2.26 2.65 2.19 2.45 2.34 2.48 2.96 2.14 2.23 
M25 2.08 2.08 2.58 2.73 2.60 2.21 2.64 2.28 2.57 2.02 2.74 
M26 1.87 2.35 3.08 2.32 3.46 2.38 3.06 2.46 3.12 2.49 2.80 
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3.2.1 Performance comparison 

The comparison results of performance predictions of the Bayesian regularisation neural 
network model and the HEC-HMS model for St. Marys can be found in Table 3. The 
performance predictions of the neural network model for Plover Mills are given in  
Table 4. The ANN model results for all datasets for both St. Marys and Plover Mills 
show that the Bayesian regularisation network offers more accurate flood flow values. 
The ANN model performances of St. Marys are also found superior compared to the 
HEC-HMS model. To provide for further comparison, the ANN simulated flood 
hydrograph is plotted in Figure 4 for St. Marys station. Finally, the improved flood output 
for St. Marys [obtained by equations (1) and (2)] is then used by the ANN2 model to 
update the computed HEC-HMS model flood flow value for the ungauged location 
Plover Mills [using equations (3) and (4)]. The improved output flood hydrograph for 
Plover Mills is plotted in Figure 5. 

Figure 4 Improved flood hydrographs of test dataset for St. Marys station (Event June 2000)  
(see online version for colours) 
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Figure 5 Improved flood hydrograph for the ungauged site, Plover Mills (Event June 2000)  
(see online version for colours) 
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4 Results and discussions 

The performance of ANN, assessed by the comparison of ANN model predictions and 
HEC-HMS model, is evaluated for only validation and test datasets. This evaluation is to 
determine the performance of the ANN model in simulating flood flow events for the 
ungauged sites. From Table 3 for St. Marys station, the ANN validation dataset presents 
the most accurate flood flow values with MAE = 0.763 m3/s or FVE = –0.006; higher 
value of EI = 0.998; and smaller value of PFC = 0.076. The overall performance 
measures for the HEC-HMS model with the validation dataset are not as good: larger 
MAE = 25.173 m3/s or value of FVE = –0.148; lower value of EI = 0.420 and higher 
value of PFC = 0.336 when compared to the ANN model. The ANN model performance 
for the test dataset is also superior. This can be seen from the comparison with the  
HEC-HMS model: lower value of MAE equal to 0.992 m3/s opposed to a 28.608 m3/s; 
slightly small FVE value of –0.010 against –0.895; very satisfactory ANN model with 
higher EI value of 0.995 against negative value of 1.844. In the latter case, the negative 
value of EI indicates that the output of the HEC-HMS model gives the more reliable 
mean of observed flood flow values; and slightly smaller value of PFC of 0.076 against 
0.371. Furthermore, from Figure 4, the simulated flood hydrograph obtained using the 
ANN model is best matched by the observed flood hydrograph with the correlation 
coefficient value of 0.998 for the test dataset. The overall performance measures for 
validation and test datasets are also very good for Plover Mills ANN simulations, as 
given by Table 4. For example, in the case of validation dataset used with the ANN 
model, there is an optimal prediction of flood flow values with small MAE value of 0.343 
m3/s and very low FVE value of negative 0.002; a very satisfactory model performance 
with highest EI value of 1.000 and lower value of PFC equal to 0.036. These performance 
measures clearly indicate that the ANN model can be used to learn representations 
between the input variables and the output/target of the HEC-HMS computed flood flow 
at Plover Mills. For the test dataset, consisting of the improved flood flow at St. Marys, 
the performance prediction of the ANN model is also found to match observed flood flow 
better than the HEC-HMS computed flood flow. The ANN model is proven capable in 
mapping unknown input-output datasets with the EI and R values of 0.998 and 0.999 that 
are much higher than 0.595 and 0.888 of the HEC-HMS model, respectively. Finally, the 
high agreement is observed between the ANN simulated hydrograph and the observed 
flood hydrograph for Plover Mills station as shown in Figure 5. 

5 Conclusions 

This manuscript presents an output updating procedure based on the ANN approach. The 
overall performance measures (such as RMSE, FVE, MAE, EI, PFC, and R) of Bayesian 
regularisation ANN model are superior to the HEC-HMS hydrologic model for St. Marys 
station. Similarly, the performance results of all the statistical measures using training, 
validation and test datasets for Plover Mills station implies that the ANN model offers 
better prediction of the flood flow value for the ungauged site. For example, the ANN 
model shows the most accurate flood flow values with low values of RMSE and MAE, a 
better estimation of flow volume magnitude with smaller FVE value, satisfactory model 
EI value higher than a 0.995, a more accurate prediction of peak flow with lower value of 
PFC, and a value of R above 0.998. The results of analyses also show that the 
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implementation of Bayesian regularisation as the objective function in the network 
training using LM algorithm can provide a well generalised network for a given unknown 
input-output dataset. Furthermore, it has been shown that using additional meteorological 
data in the network training can considerably improve the trained network and result in a 
lower RMSE value. So, the Bayesian regularisation approach as the objective function in 
the ANN model using LM algorithm can successfully be applied to reduce the output 
flood flow of physically-based model. The improved flood flow(s) at the gauged 
streamflow location(s) can be subsequently used to improve the physically-based model 
computed flow value(s) at the ungauged location(s). 
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