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Abstract

The research described in this article investigates the utility of Artificial Neural Networks (ANNs) for short term forecasting
of streamflow. The work explores the capabilities of ANNs and compares the performance of this tool to conventional
approaches used to forecast streamflow. Several issues associated with the use of an ANN are examined including the type
of input data and the number, and the size of hidden layer(s) to be included in the network. Perceived strengths of ANNs are the
capability for representing complex, non-linear relationships as well as being able to model interaction effects. The application
of the ANN approach is to a portion of the Winnipeg River system in Northwest Ontario, Canada. Forecasting was conducted on
a catchment area of approximately 20 000 km2. using quarter monthly time intervals. The results were most promising. A very
close fit was obtained during the calibration (training) phase and the ANNs developed consistently outperformed a conventional
model during the verification (testing) phase for all of the four forecast lead-times. The average improvement in the root mean
squared error (RMSE) for the 8 years of test data varied from 5 cms in the four time step ahead forecasts to 12.1 cms in the two
time step ahead forecasts.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many of the activities associated with the planning
and operation of the components of a water resource
system require forecasts of future events. For the
hydrologic component, there is a need for both short
term and long term forecasts of streamflow events in
order to optimize the system or to plan for future
expansion or reduction. Many of these systems are
large in spatial extent and have a hydrometric data
collection network that is very sparse. These condi-
tions can result in considerable uncertainty in the
hydrologic information that is available. Furthermore,
the inherently non-linear relationships between input

and output variables complicates attempts to forecast
streamflow events. There is thus a need for improve-
ment in forecasting techniques. Many of the tech-
niques currently used in modelling hydrological
time-series and generating synthetic streamflows
assume linear relationships amongst the variables.
The two main groups of techniques include physically
based conceptual models and time-series models.
Techniques in the first group are specifically designed
to mathematically simulate the sub-processes and
physical mechanisms that govern the hydrological
cycle. These models usually incorporate simplified
forms of physical laws and are generally non-linear,
time-invariant, and deterministic, with parameters
that are representative of watershed characteristics
(Hsu et al., 1995) but ignore the spatially distributed,
time-varying, and stochastic properties of the
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rainfall–runoff (R–R) process. Kitanidis and Bras
(1980a,b) state that conceptual watershed models are
reliable in forecasting the most important features of
the hydrograph. However, the implementation and
calibration of such a model can typically present
various difficulties (Duan et al., 1992), requiring
sophisticated mathematical tools (Duan et al., 1992,
1994; Sorooshian et al., 1993), significant amounts of
calibration data (Yapo et al., 1996), and some degree
of expertise and experience with the model (Hsu et al.,
1995). The problem with conceptual models is that
empirical regularities or periodicities are not always
evident and can often be masked by noise.

In time-series analysis, stochastic or time-series
models are fitted to one or more of the time-series
describing the system for purposes which include
forecasting, generating synthetic sequences for use
in simulation studies, and investigating and modelling
the underlying characteristics of the system under
study. Most of the time-series modelling procedures
fall within the framework of multivariate autoregres-
sive moving average (ARMA) models (Raman and
Sunilkumar, 1995). Traditionally, the class of
ARMA models have been the statistical method
most widely used for modelling water resources
time-series (Maier and Dandy, 1996). In streamflow
forecasting, time-series models are used to describe
the stochastic structure of the time sequence of
streamflows and precipitation values measured over
time. Time-series models are more practical than
conceptual models because one is not required to
understand the internal structure of the physical
processes that are taking place in the system being
modelled. The limitation of univariate time-series
methods in streamflow forecasting is that the only
information they incorporate is that which is present
in past flows. Many of the available techniques are
deficient in that they do not attempt to represent the
non-linear dynamics inherent in the transformation of
rainfall to runoff.

The main focus of this article is the development of
Artificial Neural Network (ANN) models for short
term streamflow forecasting, determining which char-
acteristics of the model have the greatest impact on
performance and deriving general methodologies for
using these models for any catchment area. Compar-
isons are made between the performance of different
ANN structures and a model based on a more

traditional forecasting approach. Conventional
models for streamflow forecasting typically involve
a number of physical variables that function as inputs.
A physical variable that is not very useful for forecast-
ing on its own can often be useful when used in
conjunction with other variables. Given the number
of physical variables that could be considered as
potentially relevant, it is apparent that a very large
number of different combinations of both variables
and mathematical relationships that link them together
are available when developing a streamflow forecast-
ing model. Determining an appropriate model struc-
ture by a trial-and-error process is therefore not always
practical. In this context, the power of ANNs arises
from the capability for constructing complicated indi-
cators (non-linear models) for multivariate time-series.

ANNs have been successfully applied in a number
of diverse fields including water resources. In order to
optimally fit an ARMA-type model to a time-series,
the data must be stationary and follow a normal distri-
bution (Hipel, 1986). When developing ANN models,
the statistical distribution of the data need not be
known (Burke, 1991) and non-stationarities in the
data, such as trends and seasonal variations, are impli-
citly accounted for by the internal structure of the
ANNs (Maier and Dandy, 1996). ANNs differ from
the traditional approaches in synthetic hydrology in
the sense that they belong to a class of data-driven
approaches. Data-driven approaches are suited to
complex problems. They have the ability to determine
which model inputs are critical, so that there is no
need for prior knowledge about the relationships
amongst the variables being modelled. ANNs are rela-
tively insensitive to noisy data, unlike ARMA-type
models, as they have the ability to determine the
underlying relationship between model inputs and
outputs, resulting in good generalization capability.
Lorrai and Sechi (1995) verified the possibility of
utilizing ANNs to predict R–R when only information
about the variation of the basic input variables,
namely rainfall and temperature, is available. Cheng
and Noguchi (1996) obtained better results modelling
the R–R process with ANNs using previous rainfall,
soil moisture deficits, and runoff values as model
inputs, when compared with that from a R–R
model. Smith and Eli (1995) applied ANNs to convert
remotely sensed, spatially distributed rainfall patterns
into rainfall rates, and hence into runoff for a given
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river basin. Hsu et al. (1995) showed that a non-linear
ANN model provided a better representation of the
R–R relationship of the medium-sized Leaf River
basin near Collins, Mississippi, than the linear
ARMAX (autoregressive moving average with
exogenous inputs) time-series approach or the
conceptual SAC-SMA (Sacramento soil moisture
accounting) model. Karunanithi et al. (1994) used
ANNs for river flow prediction and Raman and
Sunilkumar (1995) for forecasting multivariate

water resources time-series. ANNs have also been
applied to areas such as deriving a general operating
policy for reservoirs Raman and Chandramouli
(1996), prediction of water quality parameters Maier
and Dandy (1996) and real-time forecasting of water
quality Dandy and Maier (1996).

In the next section, a brief review of ANNs is
presented, including the differences between ANNs
and more traditional forecasting methods. ANNs are
then applied to forecasting streamflow into Namakan
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Lake, located in Northwestern Ontario, Canada. The
case study along with the development of the ANN
model is described in Section 3. The results and
conclusions of the study are given in Sections 4 and
5, respectively.

2. Artificial neural networks

2.1. ANN characteristics

ANN models attempt to achieve good performance
through dense interconnections of simple computa-
tional elements. In this respect, the architectures of
ANNs are based on the present understanding of the
biological nervous systems. ANNs offer valuable
characteristics unavailable together elsewhere. First,
they infer solutions from data without prior knowl-
edge of the regularities in the data; they extract the
regularities empirically. Second, these networks learn
the similarities among patterns directly from instances
or examples of them. ANNs can modify their behavior
in response to the environment (i.e. shown a set of
inputs with corresponding desired outputs, they self-
adjust to produce consistent responses). Third, ANNs
can generalize from previous examples to new ones.
Generalization is useful because real-world data are
noisy, distorted, and often incomplete. Fourth, ANNs
are also very good at the abstraction of essential char-
acteristics from inputs containing irrelevant data.
Fifth, they are non-linear, that is, they can solve
some complex problems more accurately than linear
techniques do. Finally, ANNs are highly parallel.
They contain many identical, independent operations
that can be executed simultaneously, often making
them faster than alternative methods.

ANNs also have several drawbacks for some appli-
cations. Firstly, they may fail to produce a satisfactory
solution, perhaps because there is no learnable func-
tion or because the data set is insufficient in size.
Secondly, the optimum network geometry as well as
the optimum internal network parameters are problem
dependent and generally have to be found using a
trial-and-error process. Finally, ANNs cannot cope
with major changes in the system because they are
trained (calibrated) on a historical data set and it is
assumed that the relationship learned will be applic-
able in the future. If there were any major changes in

the system, the neural network would have to be
adjusted to the new process.

2.2. ANN architecture

Generally speaking, all ANNs are vector mapping
functions. That is, they map one vector space to
another. An input vector is applied to the network
and in response, the network produces an output
vector. Each vector consists of one or more compo-
nents, each of which represents the value of some
variable (e.g. precipitation, temperature, streamflow).

The architecture of a feed-forward ANN can have
many layers where a layer represents a set of parallel
nodes. A typical three-layer feed-forward ANN is
shown in Fig. 1. It should be noted that the feed-
forward ANN architecture is but one of many possible
architectures. The feed-forward ANN is adapted
herein due to its general applicability to a variety of
different problems (Hsu et al., 1995). The first layer is
called the input or passive, layer and consists of a set
of processing elements (PEs) that connect with the
input variable(s). The sole role of the input layer is
to pass the input variables onto the subsequent layers
of the network. The last layer connects to the output
variable(s) and is called the output, or active, layer.
The inputs to the neurons in hidden layer(s) and the
output layer come exclusively from the outputs of
neurons in previous layers, and outputs from these
neurons pass exclusively to neurons in following
layers. Layer(s) of PEs in-between the input and
output layers are called hidden layers because they
have no direct connection to the outside world, neither
input nor output. Introducing this intermediate layer
enhances the network’s ability to model complex
functions. Lippmann (1987) suggests that no more
than three layers (one hidden layer) are required in
feed-forward networks because a three-layer network
can generate arbitrarily complex decision regions.
The PEs in each layer are called nodes or units. The
number of nodes in the input and output layers are
dictated by the dimension of input and output vectors
presented to the network for training. The number of
hidden layers and hidden layer nodes is determined in
the process of designing the network. Each connection
has an associated adjustable parameter called a weight
or connection strength. All of the hidden nodes
receive all input data, but because each has a different
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set of weights, the sets of values differ. The number of
hidden nodes must be large enough to form a decision
region that is as complex as is required by a given
problem (Lippmann, 1987).

The architecture of a single PE or node is shown in
Fig. 1. In general, a node can haven inputs, labeled
from 1 throughn. For the example node shown in
Fig. 1, n � 2. In addition, each node has an input
that is always equal to 1.0, called thebias. Each
nodej receives information from every nodei in the
previous layer. A weight (wji) is associated with each
input (xi) to nodej. The effective incoming informa-
tion (NETj) to nodej is the weighted sum of all incom-
ing information, otherwise known as the net input

NETj �
Xn
i�0

wji xi ; �1�

wherex0 andwj0 are called the bias term (x0 � 1.0)
and the bias weights respectively. Eq. (1) applies to
the nodes in the output layer and in the hidden
layer(s).

The transfer function, or squashing function, intro-
duces a non-linearity that, when applied to the net
input of a node, determines the output of that node.
The effective input, NETj, is passed through a transfer
function to produce the outgoing value (OUTj) of the
node. Hsu et al. (1995) state that the most commonly
used activation function is the steadily increasing S-
shaped curve called a sigmoidal function. This func-
tion acts as a squashing function and compresses the
range of NET so that OUT lies between 0 and 1. The
sigmoidal function most often used for ANNs is the
logistic function (Hsu et al., 1995), expressed mathe-
matically as:

OUTj � 1
1 1 exp�2NETj� : �2�

The value of NETj can vary between̂ ∞, but OUTj is
bounded between 0 and 1. Since the desired outputs of
the network are not generally in the range from 0 to 1,
the target data must be scaled appropriately prior to
the training (calibration) process.

2.3. Network training

The main objective of training (calibrating) a
network is to produce the desired set of outputs
when a set of inputs is fed to the ANN. Training a

network is a procedure during which an ANN
processes a training set (input –output data pairs)
repeatedly, changing the values of its weights, accord-
ing to a predetermined algorithm, to improve its
performance. It is important that the training set
provide a full and accurate representation of the
problem domain; otherwise the network will not
meet expectations. Each pass through the training
data is called an epoch and the ANN learns through
the overall change in weights accumulated over many
epochs. During training, the network weights gradu-
ally converge to values such that each input vector
produces output values that are as close as possible
to the desired output vector. Valluru and Hayagriva
(1993) estimate that over 80% of all neural network
projects in development use the backpropagation (BP)
training algorithm. The BP algorithm gives a prescrip-
tion for changing the weights,wji, in any feed-forward
network to learn a training vector of input–output
pairs. It is a supervised learning method in which an
output error is fed back through the network, altering
connection weights so as to minimize the error
between the network output and the target output.
During supervised training, the output predicted by
the network is compared with the actual (desired,
historical) output and the mean squared error (MSE)
between the two is calculated. Further details on the
BP algorithm can be found in Rumelhart et al. (1987).

Designing an ANN can be as simple as selecting a
commercially available software package and config-
uring it to agree with the data or as complex as coding
a fully custom network from scratch — an approach
beyond the scope of this article. The intended research
concentrates on the application of ANNs for stream-
flow forecasting. Braincele (Promised Land Technol-
ogies, 1993) is the software that was used to
implement the ANNs in this research.

3. Application of the neural network

This section describes the study area and provides
an overview of the conventional forecasting model
that is used as a basis of comparison for the ANN
model. The two forecasting approaches are compared
first in an experiment where the ANN is provided with
exactly the same inputs as are provided to the conven-
tional forecasting model. Finally, a second experiment
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is presented in which an attempt is made to improve
upon the performance of the ANN by altering the
input information provided.

3.1. Description of study area

The majority of the Winnipeg River Basin is
located in the Precambrian Shield region of North-
western Ontario with parts of the watershed in South-
eastern Manitoba and Minnesota (see Fig. 2). The

Winnipeg River and its main tributary, the English
River, constitute an enormous water resource, with a
drainage area of approximately 150,000 km2. (Acres
International Ltd., 1993). There are five regulated
lakes in the Winnipeg River Basin, namely Lake St.
Joseph, Lac Seul, Namakan Lake, Rainy Lake and
Lake of the Woods. The management of the Winnipeg
River Basin system is particularly difficult due to
interests in control of flooding, water based recrea-
tional activities, hydroelectric power generation,
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agriculture, and municipal and industrial water
supply. Directing the operation of large lakes requires
monitoring and forecasting basin conditions, planning
regulation strategies, consulting with affected parties
and providing public information. The most upstream
lake in the watershed, Namakan Lake, was chosen as
the test location in this case study. The Namakan Lake
subwatershed has a drainage area of approximately
19 270 km2. The catchment area receives an average
precipitation of 78 cm, of which roughly 30% is
snowfall, and the average annual runoff from the
catchment is about 26 cm. There are 29 years of aver-
age daily precipitation and temperature data as well as
average weekly streamflow values available from
1960 to 1988 for the Namakan Lake subwatershed.

3.2. Description of experiments

In the first experiment (experiment no.1), an ANN
model was produced to give a fair comparison
between the forecasting accuracy of the conventional
model and that of the ANN technology. This was done

by providing the ANN with the same inputs and infor-
mation that were used in the development of the
conventional model. The ANN model was then
trained on the data from the period 1965 to 1985
that were used to calibrate the conventional model
and tested on the data before 1965 and after 1985
that were set aside for model verification purposes
LWCB (1994b). The intent with experiment no. 1
was to provide a fair and unbiased comparison
between the two models. To the extent possible, all
conditions for the two models were kept the same.

In the second experiment, an ANN was built that
was not restricted to the input variables used in the
conventional model. The purpose of the second
experiment (experiment no. 2), was to build an ‘opti-
mum’ ANN. This ‘optimum’ network involved a
different set of inputs. This was done using some of
the same inputs as in the conventional model and
investigating the use of additional inputs. In this
experiment, part of the data had to be eliminated
from the data set. The reason for doing this was that
it appeared that the actual measured data were miss-
ing. The missing data appeared to have been artifi-
cially filled-in for purposes of keeping the time-
series continuous. Therefore, to obtain a proper
comparison between the accuracy of the ANN
model developed in experiment no. 1 and that devel-
oped in experiment no. 2, these data were eliminated
and experiment no. 1 was repeated using the reduced
data set. The results for the ANN model for experi-
ment no. 2 are then compared with those from the
ANN model for experiment no. 1 applied to the new
data set.

3.3. Conventional forecasting model

The Winnipeg Flow Forecasting System (WIFFS)
is a stochastic-deterministic watershed model devel-
oped by ACRES International of Niagara Falls,
Ontario, to estimate the quarter-monthly natural
flows into the major lakes in the system. The
WIFFS model served as the comparison tool to the
ANN method. This model contains three basic
components: (i) the water input generation model;
(ii) the abstraction or loss model; and (iii) the distri-
bution or watershed model. The water input genera-
tion component includes a procedure to calculate
rainfall and snowmelt water input to the watershed,
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based on the meteorological data. This module uses a
degree-day snowmelt model to determine the contri-
butions from the snowpack. The abstractions model
estimates the portion of the water input that does not
infiltrate into the ground but rather becomes runoff.
Abstractions are modelled using a variable runoff
coefficient model. The watershed routing component
of the model routes this effective water input through
the watershed using a time-series model of the
ARMAX type. The WIFFS model is presented in
schematic form in Fig. 3. For a more detailed descrip-
tion of each of the three components of the WIFFS
model, the reader is referred to Acres International
Ltd. (1993).

The WIFFS model includes four time steps each
month. The first time step includes 8 days, the second
and third 7 days, and the fourth has the remaining days
in the month ((LWCB, 1994a). This translates into 48
periods per year. For the remainder of the article, each
time period will be referred to as a ‘week’, even
though each quarter-month period is not comprised
of seven days. The inputs to the WIFFS model include
Period ‘now’, P (t), the period before the first forecast
period, Forecast lead-time, the number of periods
from Period‘now’ for which forecasts are calculated,
Historical Meteorological inputs consisting of
complete precipitation and temperature data for
Period ‘now’ and the previous six periods for Nama-
kan Lake. The number of previous periods of meteor-
ological data required may differ for each
subwatershed. The final inputs areForecasted
Meteorological inputs, which provide an inference
of future precipitation and temperature inputs. The
outputs from the WIFFS model areStreamflow (t1
1, 2, 3 or 4), one, two, three or four week(s)-in-
advance forecast of streamflow. For the one-time
step ahead forecasts for the Namakan Lake watershed,
WIFFS has a total of 17 parameters that must be
determined through calibration. The objective func-
tion for the calibration of WIFFS is the minimization
of the MSE between observed and forecasted flows.
The same objective function is used in the training
(calibrating) of the ANN models.

3.4. ANN model identification

In both experiments, a multivariate time-series
model was derived for the outputFlowt1i; i � 1, 2,

3 and 4. The data used are total weekly precipitation,
average weekly temperature and average weekly
streamflow. In all cases, the networks were trained
over a certain part of the data (1965–1985) and
once training was complete, the networks were tested
over the remaining data (1960–1964 and 1986–
1988). Training and testing periods corresponded to
the calibration and verification periods adopted for
WIFFS.

3.4.1. Experiment no. 1
The input and output variables used in the ANN

model were fixed to match those used in the WIFFS
model. These inputs included precipitation, tempera-
ture and local inflow of the preceding weeks as well as
rainfall and temperature of the examined week. For
the one-week ahead forecast of flow,Flow (t 1 1), the
model consisted of the following 18 input variables:
past seven periods of weekly precipitation,P (t),
P(t 2 1), …P(t 2 6), past seven periods of weekly
temperature,T(t), T(t 2 1), …, T(t 2 6), past two
periods of local inflow,Flow(t) and Flow(t 2 1),
1-week ahead inference of the average weekly
precipitation, P(t 1 1) � 50th percentile, and 1-
week ahead inference of the average weekly
temperature,T(t 1 1) � 50th percentile. The 2-
week ahead forecast included an additional three
inputs [P(t 1 2) � 50th percentile,T(t 1 2) �
50th percentile, andFlow(t 1 1) calculated in the
1-week ahead forecast] for a total of 21 inputs and
1 output [Flow(t 1 2)]. The number of input/output
variables for the three and four-week ahead fore-
casts followed the same sequence and included 24
inputs 21 output and 27 inputs21 output, respec-
tively.

Since the number of inputs (18) and outputs (1) for
the one-week ahead forecast were fixed to match those
of the WIFFS model, the input layer consisted of 18
input nodes with one node in the output layer. The
only part of the network that remained to be config-
ured was the hidden layer(s). Initial forecasting results
indicated that the problem of forecasting streamflow
in this river basin could be accomplished with only
one hidden layer. Networks were initially configured
with both one and two hidden layers but improvement
in forecasting results were only marginal for the two
hidden layer case with training times increasing from
approximately ten minutes to approximately 2 h.
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Therefore, the ANNs have been built using one-
hidden layer. The problem then became that of how
many nodes would make up this single hidden layer.
Cheng and Noguchi (1996) indicate that selecting too
many hidden neurons will increase the training time
but without significant improvement on training
results. Ranjithan et al. (1993) state that too many
hidden neurons will encourage each hidden neuron
to memorize one of the input patterns, and thereby
diminish the interpolation (generalization) capabil-
ities. Ranjithan et al. (1993) state that the general
practice is to determine the number of intermediate
units by trial-and-error based on a total error criterion.
In this research the trial-and-error process was used.

The error of the training set decreases gradually
with an increasing number of intermediate units.
Further, the error predictions for the test set decrease
initially but tend to increase after reaching a mini-
mum. These observations indicate that although the
training process becomes progressively easier, the
generalization capabilities of the network reaches an
optimum and does not improve indefinitely with an
increasing number of intermediate nodes. The results
for this case suggest that, for the one-week ahead
forecast, a single hidden layer consisting of 17 hidden
nodes is suitable for prediction. This model structure
is represented by the notation ANNLead (ni, nh, no),
whereni is the number of nodes in the input layer,
nh is the number of nodes in the hidden layer, andno is
the number of nodes in the output layer (no � 1 in our
case). Therefore, the optimum ANN structure for the
one-week ahead forecast is presented as ANN1(18, 17,

1). The optimum ANN structure and the associated
input variables, for all forecast lead times, are
summarized in Table 1. It was expected that the
number of hidden nodes would increase uniformly
as the number of inputs to the model increased. As
can be seen from Table 1, this was not the case in
experiment no. 1. It is not clear why, for example,
ANN2 has roughly half the number of nodes that are
used for ANN1.

3.4.2. Experiment no. 2
After training the initial model in experiment no. 1

with the same inputs used in the WIFFS model, two
new inputs were added to the data set. These addi-
tional inputs, referred to as ‘identifying information’,
proved to be helpful in training the network. The first
of these two inputs was the ‘period of the year’,
Period(t 1 1), of the one-week ahead forecast. This
input provided the network with information on the
season in which the forecast was made. The second of
the two inputs was the cumulative precipitation from
1st November to the time of the current period of the
year, Cprecip(t), up to 1st April. This input repre-
sented a measure of the amount of snowpack that
accumulates over the winter and adds to the spring
runoff. This input was particularly helpful in accu-
rately forecasting the rising limb of the hydrograph
during the spring runoff periods. As in experiment no.
1, only one hidden layer was used in the network with
the problem again of how many nodes to use in the
hidden layer. In addition to determining the number of
nodes in the hidden layer was the problem of how
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Table 1
ANN structures and input variables

Lead time ANN structurea Time periods for input variables

Precipitation Temperature Flow

Experiment no. 1
1 (18, 17, 1) t 1 1! t 2 6 t 1 1! t 2 6 t! t 2 1
2 (21, 9, 1) t 1 2! t 2 6 t 1 2! t 2 6 t 1 1! t 2 1
3 (24, 24, 1) t 1 3! t 2 6 t 1 3! t 2 6 t 1 2! t 2 1
4 (27, 18, 1) t 1 4! t 2 6 t 1 4! t 2 6 t 1 3! t 2 1
Experiment no. 2
1 (10, 17, 1) t! t 2 2 t t! t 2 3
2 (10, 5, 1) t 1 1! t 2 1 t 1 1 t 1 1! t 2 2
3 (10, 7, 1) t 1 2! t t 1 2 t 1 2! t 2 1
4 (10, 16, 1) t 1 3! t 1 1 t 1 3 t 1 3! t

a Note: values represent (number of input nodes, number of hidden nodes, number of output nodes)



many nodes should be used in the input layer. Inputs
were not restricted to only those used in the WIFFS
model and inputs that were not being utilized by the
network to learn the underlying function being
modelled were eliminated.

With the additional two inputs added to the data set,
a sensitivity analysis of all of the input variables was
carried out to determine the relative significance of
each of the model inputs. The aim of the sensitivity
analysis was to delete those inputs that do not have a
significant effect on model performance. The sensitiv-
ities were used as a guide to decide which inputs to
retain and which to delete by applying some degree of
judgement. This was done using the ‘leave out analy-
sis’ of the software that helps identify inputs that have
a relatively small influence on the output.

For the one-week ahead forecast of local inflow,
Flow (t 1 1), the ANN model consisted of the

following 10 input variables: ‘period of the year’ of
the 1-week ahead forecast,Period(t 1 1); past three
periods of weekly precipitation,P(t), P(t 2 1), P(t 2
2); cumulative precipitation since 1st November to the
period of the forecast,Cprecip(t); past week of aver-
age temperature,T(t); and past four periods of average
weekly local inflow, Flow(t), Flow(t 2 1),….,
Flow(t 2 3). The benefit of the optimum network
configured in experiment no. 2 (for the 1-week
ahead forecast) is that the forecaster does not need
to make an inference on the future weekly precipita-
tion and average weekly temperature as was needed in
experiment no. 1. All data used in the network for the
one-week ahead forecast is historical data. In ‘Multi-
lag’ predictions, on the other hand, the 50th percen-
tiles were used as predicted values of precipitation and
temperature and previous forecasted streamflows
from the neural networks were used as predicted
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Fig. 4. One-week ahead forecast of flow into Namakan Lake for 1960–1964 and 1986–1988 using the experiment no. 1 ANN model.



values for streamflow. These values were appended to
the database and used to predict future streamflow
values. The network for a one-week ahead forecast
consisted of 17 hidden neurons and is represented as
ANN1(10, 17, 1). Similar simulations were conducted
to determine the hidden node structure for the 2, 3 and
4-week ahead forecasting networks. Table 1
summarizes the structure and input variables for the
ANN for the each of the four lead times. Note that in
addition to the input variables shown in Table 1 for
experiment no. 2, each model also uses the period of
the year and cumulative precipitation, as noted
above.

4. Results

In order to quantify the relative merit of using

ANNs for streamflow forecasting four evaluation
measures were used to measure the effectiveness of
each method. These performance measures were
computed separately for the ANN forecasts of the
training data and the independent events or testing
data. These measures indicate how well the ANN
learned the events it was trained to recognize, and
the degree to which each ANN can generalize its
training to forecast events not included in the training
process. The primary performance measure that
compared the WIFFS model to the ANN model was:
(i) root mean squared error (RMSE). The three
secondary performance measures that were used
(only in experiment no. 2) to compare the best ANN
model against historical values were; (ii) forecast of
total volume; (iii) forecast of peak flow magnitude;
and (iv) forecast of peak flow timing. Each of the four
effectiveness measures were calculated for the
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Fig. 5. 4-week ahead forecast of flow into Namakan Lake for 1960–1964 and 1986–1988 using the experiment no. 1 ANN model.



calibration set (1965–1985) and each of the two veri-
fication sets (1960–1964 and 1986–1988).

4.1. Experiment no. 1

The results of forecasting using the ANN model
(with the same inputs used in the WIFFS model) on
the test data are presented in Figs. 4 and 5 for forecast

lead times of one and four weeks respectively. These
graphs show the time of the year the forecast was
made, along thex-axis with a comparison of both
the recorded and forecasted streamflows on they-
axis. The ANN model forecasts the magnitude and
timing of both the summer peaks and the smaller
peaks which occur early and late in the year, quite
well. The results obtained for a 1-week forecast of
Namakan Lake local inflow were generally quite
good except for part of October in 1961. The recorded
precipitation and streamflow showed approximately
14.0 cm of precipitation in period 34 and approxi-
mately 150 cms of streamflow in period 36, both in
the year of 1961. Based on historical data one might
have expected a streamflow value in the range of
250 cms given a precipitation value of 14.0 cm. This
forecasting error is probably due to an error in either
the precipitation data or the streamflow data.

The ANN model forecasts the magnitude of the
baseflow quite well, but encounters greater difficulty
in forecasting the magnitude of the peak flows. Gener-
ally, as the forecast lead-time grows from 1 to 4
weeks so does the forecast error. This is expected
since these forecasts are beginning to use inferences
on the precipitation, temperature and forecasted flow
from the previous week(s).

Scatter plots showing observed (historical) flows on
thex-axis against the forecasted flows from the ANN
on they-axis, for lead times of one and four weeks, are
displayed in Figs. 6 and 7 for the test set data. In each
of the scatter plots a perfect forecast lies on the 45o

line. The 1-week ahead forecast (Fig. 6) falls rela-
tively close to the 45o line except for three points.
These three points are most likely problems with the
input data (i.e. streamflow or precipitation gauging
errors). It is interesting to note that the flows below
200 cms tend to fall closer to the 45o. This illustrates
that the ANN is accurate at forecasting baseflow
values. As the flows increase above 200 cms, the fore-
casts tend to diverge from the 45o line showing the
difficulty the ANN has with larger, peakflow values.
As the lead-time increases from one through to four
weeks, the forecasted flows tend to increasingly
diverge from the 45o line, especially for flows greater
than 200 cms. This can be seen by comparing the plots
in Figs. 6 and 7. This model performance is qualita-
tively similar to that of the WIFFS model.

The ANN was able to train to a smaller RMSE than

C.M. Zealand et al. / Journal of Hydrology 214 (1999) 32–48 43

Fig. 6. Observed versus 1-week ahead Forecast of flow into Nama-
kan Lake for 1960–1964 and 1986–1988 using experiment no. 1
ANN.

Fig. 7. Observed versus 4-week ahead Forecast of flow into Nama-
kan Lake for 1960–1964 and 1986–1988 using experiment no. 1
ANN.



the WIFFS model in all of the four forecast leads. The
real test of the ANN was the comparison to the WIFFS
model for the testing periods from 1960 to 1964 and
1986 to 1988. The ANN was able to forecast to a
smaller RMSE than the WIFFS model in all four fore-
cast leads in all 8 years of test data. These results are
summarized in Table 2, which lists the calculated
RMSE for both models (WIFFS and ANN) and each
of the three data sets (one calibration set and two
verification sets).

4.2. Experiment no. 2

The results of experiment no. 2 using the ANN on
the test data are presented in Figs. 8 and 9 for forecast
lead-times of one and four weeks. Scatter plots show-
ing observed (historical) flows on thex-axis against
the forecasted flows from the ANN on they-axis (for
lead times of 1 and 4 weeks) are displayed in Figs. 10
and 11 respectively, for the test set data. The follow-
ing section quantitatively evaluates the results in
terms of four performance measures.

The change in the calculated root-mean-squared
error (DRMSE) from experiment no. 1 to experiment
no. 2 for each of the three data sets is given in Table 3.
Negative values ofDRMSE indicate that the model
for experiment no. 2 achieved a lower RMSE than was
the case for experiment no. 1. The ‘optimum’ ANN
was able to train to a smaller RMSE than the ANN

model trained in experiment no. 1, in all of the four
forecast leads. The optimum ANN was able to fore-
cast to a smaller RMSE than the ANN model trained
using the inputs from experiment no. 1, in all but two
of the forecast leads during the 8 years of test data.
The results are summarized in Table 3.

The ANN model was generally effective at fore-
casting the volume of flow that could be expected in
a given year. For a lead-time of one-week, the fore-
casted volumes ranged from an overprediction of
6.1% to an underprediction of 3.7%. The average
overprediction was 0.1%. For a lead-time of two
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Table 2
Root mean squared forecast error, experiment no. 1

Period Forecast Lead
(weeks)

RMSE (m3/s)

WIFFS ANN

Calibration (1965–1985) 1 36.5 35.5
2 56.3 51.9
3 69.7 68.6
4 82.3 78.4

Verification (1960–1964) 1 36.9 33.9
2 51.3 49.4
3 60.9 54.6
4 68.6 58.4

Verification (1986–1988) 1 50.4 34.1
2 78.3 52.7
3 80.1 71.7
4 89.8 89.2

Table 3
Change in root mean squared forecast error, experiment no. 2

Period Forecast lead
(weeks)

DRMSE
(m3/s)

Calibration 1 21.2
(1965–1985) 2 26.7

3 27.9
4 27.5

Verification 1 20.4
(1960–1964) 2 1.8

3 21.0
4 1.2

Verification 1 23.5
(1986–1988) 2 25.1

3 26.3
4 28.0



weeks, the forecasted volumes ranged from a 4.9%
overprediction to a 7.5% underprediction with an
average underprediction of 2.1%. Three-week lead
times produced forecasted volumes ranging from a
5.4% overprediction to a 15.1% underprediction
with an average underprediction of 5.2%. Four-
week lead times produced forecasted volumes
ranging from a 13.4% overprediction to a 18.2%
underprediction with an average underprediction of
3.4%. As expected, there was a considerable range
of observed errors in forecasting the total yearly
volume within both the 8 years of test data as
well as the four different lead times. It was
encouraging though, to see that the average total
forecasted yearly volume only worsened by 5.3%
from a 1-week ahead forecast to a 3-week ahead
forecast with forecasts made four weeks ahead
improving by 1.8% over the three-week ahead

forecast. This latter improvement was unexpected
since forecasts generally deteriorate with increasing
lead times.

The ANN model performed well at forecasting both
the magnitude and timing of the eight peak flows in
the test set. However, there is a considerable range of
observed errors in forecasting the magnitude of the
peak flow. For a lead-time of one-week, the forecasted
peak flows ranged from an overprediction of 0.9% to
an underprediction of 18.8% with an average under-
prediction of 4.4%. For a lead-time of 2 weeks, the
forecasted peak flows ranged from an overprediction
of 9.6% to an underprediction of 17% with an average
underprediction of 1.3%. Three-week lead times
produced forecasted peak flows ranging from a 3%
overprediction to a 28.7% underprediction with an
average underprediction of 10.6%. Four-week lead
times produced forecasted peak flows ranging from
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Fig. 8. One-week ahead forecast of flow into Namakan Lake for 1960–1964 and 1986–1988 using the experiment no. 2 ANN model.



a 5.7% overprediction to a 29.6% underprediction
with an average underprediction of 12.6%.

Peak flow timing for a 1-week ahead forecast
ranged from being 2 weeks ahead to 3 weeks behind
the actual location with an average of 0.90 weeks
behind. Two and three-week ahead forecasts of
peak location produced values in the range of one-
week ahead to three weeks behind the actual peak.
The two-week ahead forecasts averaged 1.13 weeks
behind the actual peak with the three-week ahead
forecast averaging 1.5 weeks behind. The 4-week
ahead forecast produced results that ranged from a
perfect forecast of peak timing to a forecast of three
weeks behind with an average of 1.88 weeks behind.
It is interesting to note that the average predicted
timing of the forecasted peak deteriorates very slowly
when forecasting from 1-week ahead to 4 weeks
ahead.

5. Conclusions and recommendations

The ANN model applied to the streamflow forecast-
ing problem seems to have reached encouraging
results for the subwatershed under examination. A
very close fit was obtained during the training (cali-
bration) phase and the networks developed consis-
tently outperformed the WIFFS model during the
testing (verification) phase.

The results obtained with ANNs for 1, 2, 3 and 4-
week ahead forecasts are better than those reached in
the WIFFS model and confirm the ability of this
approach to provide a useful tool in solving a specific
problem in hydrology, streamflow forecasting. The
initial success of the ANN models developed for the
Namakan Lake subwatershed indicates a bright future
for further applications in the Winnipeg River Basin
as well as other watersheds in the area. The results
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Fig. 9. 4-week ahead forecast of flow into Namakan Lake for 1960–1964 and 1986–1988 using the experiment no. 2 ANN model.



suggest that the ANN approach may provide a super-
ior alternative to the time-series approach for devel-
oping input–output simulations and forecasting
models in situations that do not require modelling of
the internal structure of the watershed.

The potential of ANN models for simulating the
hydrologic behavior of watersheds has been presented

in this article. The greatest difficulty was determining
the appropriate model inputs for such a complex
problem. Although ANNs belong to the class of
data-driven approaches, it is important to determine
the dominant model inputs, as this reduces the size of
the network and consequently reduces the training
times and increases the generalization ability of the
network for a given data set. In the case study consid-
ered, sensitivity analyses were used in conjunction
with judgement to reduce the number of model inputs
from 18 to 10 (for the one-week forecast model). This
reduced training times from approximately ten
minutes to less than two minutes and reduced the
RMSE (test) from 34.0 to 32.5 cms. Similar improve-
ments were observed for the two, three, and four-week
forecast models.
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