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ABSTRACT: A sensitivity analysis of model forecasts provided possiblc insight into
development of a hybrid technique to improve forecast quality using engincering
knowledge and experience. A rule-based decision support system (DSS) is devel-
oped to demonstrate this technique for sclecting long-range water-supply forecast
models. The knowledge-based system is also used to document experience gained
in developing time series models for the purposc of tutoring inexpericnced time
series modelers. The DSS allows automation of data manipulation, modeling tasks,
and as a facility for coding descriptions of expert knowledge. It also acts as an aid
for learning time-serics concepts through modules which assist users in producing
representative time serics models. Use of Unix workstations for decision support
is explored through the integration of various software tools with the expert system
development tool Nexpert Object. Nexpert Object provides the platform for man-
aging coded experience, as well as controlling cxternal tools for analysis and pre-
sentation of results.

INTRODUCTION

The development of a DSS for time-series modeling is part of a case study
for evaluating the effectiveness of long-range stream flow forecasting at
Manitoba Hydro, a hydroelectric utility in the province of Manitoba, Can-
ada. Fig. 1 summarizes the project. A review of current practices was made
for several utilities, including Ontario Hydro (OH), Quebec Hydro (QH),
Manitoba Hydro (MH), and British Columbia Hydro (BCH). The specific
forecast requirements and scenario for producing long-range forecasts at
Manitoba Hydro provided the basis for comparing currently used models
with statistical time-series modeling approaches such as Deseasonalized
AutoRegressive Moving Average (ARMA) models, and Seasonal Auto-
Regressive Integrated Moving Average (SARIMA) models. Forecasts were
produced for a range of possible flow conditions by a number of statistically
representative models. Evaluation of these forecasts suggested a technique
for improving forecasting quality through the selection of a single model
for a given system state (Bender and Simonovic 1993). This differs from
previous forecast approaches, which may use weighted combinations of
models when there exists a set of choices (McLeod et al. 1987; Newbold
and Granger 1974). Implementation of the findings within a computer-based
application of the case study served to document the procedure and allow
efficient use of the knowledge and experience gained by the researchers.
Presentation of results using workstation tools facilitated efficient infor-
mation transferral. Developing the application using expert systems tech-
nology and a decision-support development tool facilitated potential im-
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FIG. 1 Project Overview

provement of forecasts by documenting the knowledge base that govern:
the procedure.

DECISION-SUPPORT SYSTEMS

In the past, computers have been used in the field of water resources as
a means of providing information to solve management problems. This use
has expanded into techniques such as decision support systems (DSS), which
position the user at the center of the decision-making process (Thierauf
1988; Guariso and Werthner 1989; Loucks and daCosta 1991). By amplifying
the capabilities of the user and by eliminating impediments to rational func-
tioning, DSS improves the decision-making process by placing information
in the hands of the user at the proper time and place, and by providing
complete flexibility in the choice and sequence of analysis, and in the pre-
sentation of results.

The approach used in the development of a DSS for long-range stream
flow forecasting has the ability to interactively respond to users’ ad hoc
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requests in “‘real time.” The dynamic forecasting environment compels the
user to ask for information that often cannot be supplied in advance. The
user has to be reactive, or proactive, by making short-term and long-term
decisions based on the information and tools at hand. _

Because judgment and insight are critical in forecasting. the DSS is de-
signed to support different user needs, from model search and identification
to producing forecasts. To make this DSS an effective tool. two main pro-
cesses are addressed in the development: (1) Problem representation; and
(2) problem solving. Problem representation involves searching for available
mathematical forms for forecasting process representation. All the oppor-
tunities related to these representations can be identified and implemented.
In addition, the DSS centers on problem solving—identifying current fore-
casting needs and responding to them. o

An integral part of problem representation is the “‘perception principle.
This principle states that a forecast must be able to perceive future trends
that have impacts on the operation of water resource projects before they
actually occur. The great value of the DSS is that users can perform “what
if”” sensitivity analyses, so they can try different decisions without having
to deal with the consequences. In this way a DSS for long-term stream flow
forecasting can guide the user through most optimistic, pessimistic, or ex-
pected forecasts. ) S

A characteristic property that makes this DSS approach original is an
emphasis on the use of expert-system technology, which has attracted the
attention of many analysts in the water resources field. Expert, or knowl-
edge-based, systems have two main components: the knowledge base itself,
and a method, the inference engine, for applying that knowledge to the
solution of a specific problem. Combining a knowledge-based system with
an interactive decision support system provides what is called an Intelligent
decision support system (IDSS) (Simonovic and Savic 1989)."’1'he emphasis
is still on support, however, whether a system is “intelligent” or not.

In general, several roles are envisioned for expert systems in long-range
flow forecasting. An expert system can be developed to serve as a stand-
alone tool. It may also act as an alternative form of documentation in place
of textbooks or manuals. The form accepted in the presented research is as
an interface between a complicated computer modeling process and a less
experienced user. Through the introduction of an expert system component,
a DSS role has been expanded from a tool for interactive forecast analysis
to a vehicle for communication, experimentation, training. and learning.

DECISION-SUPPORT DOMAIN

Long-range forecasting for reservoir management using time-series mod-
eling techniques can define two general forms of model structuring. Both
correlate previous time lags. expressed as a combination of AutoRegressive
(AR) and moving average (MA) parameters (Box and Jenkins 1970). One
form of time series modeling uses deseasonalization techniques to produce
stationary data series. The resulting model is an ARMA model. SARIMA
models are the other form of time series modeling, either in multiplicative
or nonmultiplicative form [(1)]. For a detailed discussion of these modeling
techniques gee Abraham and Ledolter (1983), Bowerman and O’Connell
(1987), and or Salas (1980)].

SARIMA (p, d. q) X (P, D, Q). or &(B)®(B“)(1 — B)¥(l — B%)’x,
= BBYO(BLYA,  « et (1)

Examination of the autocorrelation function (ACF) and partial autocor-
relation function (PACF) provides a thorough basis for analysis of the system
behavior under time dependence, and will suggest the appropriate param-
eters to include in the model. The identification of a stationary series re-
quires consideration of the extent in which the correlation functions are
significant. This can become difficult for a data set with complicated seasonal
patterns or trends. Experience in modeling time-series data, and familiarity
with identifying stationary processes, is a great asset.

Models adequacy can be evaluated by three tests. A r-test is used to check
the significance of individual parameters. A parameter may be removed
from the model structure if it is statistically insignificant, and the remaining
parameters should be recalculated. A chi-square test is used to evaluate the
validity of the model in general. The probability values associated with the
residual autocorrelation chi-square test should be greater than 5%. If one
or more of the probabilities are not, yet the model passes the other tests,
the model structure may be completely inadequate and a new differencing
scheme should be tested. Finally, residual ACF and PACF values can be
checked for additional significant lags. Review of these correlation functions
will give an indication of whether all of the appropriate model parameters
have been included.

More than one differencing scheme may produce a reasonably stationary
series, so more than one acceptable SARIMA model structure may be
found. These models may be immediately compared by observing any dif-
ferences in chi-square probabilities. If one model exhibits considerably greater
probabilities, it may be chosen above the others. Backcasts, values already
used to define the model, can also be made and residuals compared. There
are occasions, though, where one model may not be recognizably superior
to other models.

When there is a set of possible models to produce forecasts for stream
flow series, some type of combination may reduce forecast errors, but there
may be situations where a single model is superior, or more accurate, than
any other model structure or forecast combination. This research investi-
gated model performances under a variety of flow conditions to suggest
model choices that are dependent on current system conditions. Comparison
of forecast errors and visual observations of forecast series of several avail-
able models, suggested a system of model ranks for each of the flow scenarios
to generate simple guidelines for selecting a specific model. A comprehen-
sive forecast comparison plan was envisioned after acknowledging that any
given model structure represents a certain portion of the system. Depending
on the focus of the system needs, and system characteristics, model per-
formance may be sensitive to the forecast scenario. Since flow data was
supplied for several Manitoba river basins, the forecast scenario remained
consistent with Manitoba Hydro system needs.

A sensitivity analysis produces a large number of forecasts to compare,
allowing evaluation of the sensitivity of the models to various flow condi-
tions, and providing an in-depth understanding of model performance. The
mean squared error (MSE) is a statistical parameter that provides a con-
venient measure of performance in the same units and magnitude as vari-
ance. Model selection is based on minimum MSE, and observations on
general forecast curve characteristics. Visual examination of actual forecasts
is beneficial in making observations on model behavior concerning the ap-
propriateness of the model behavior characteristics. or ability to handle
large system fluxes such as spring runoff. Special attention is focused on
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tendencies to overestimate or underestimate the flow. If it is possible to
determine which model produces the best forecast under a general array of
flow possibilities, then that model should be chosen.

Intricate observations on performance are often made as model behavior
may be subtle. An understanding of the consequences of strengths, and
especially weaknesses, of model choices is vital to the selection of a model.
Spurious observations in the real-time operational demand for forecasts may
be costly. This risk can be minimized by documenting the knowledge of an
expert within a decision support system that acts to confirm the expert, or
to act on the behalf of the expert.

Generation of rules for context-sensitive model selection uses knowledge
of modeling techniques and engineering experience to automatically produce
optimal forecasts for previously studied river basins. The potential of this
forecast tool is to remove inconsistencies in forecasting decision making,
reduce time requirements for producing updated forecasts, and aid both
experienced engineers and novice users in clarifying important decision
issues in forecasting.

DESCRIPTION OF DECISION-SUPPORT SYSTEM

The model selection process, and observations concerning the quality of
forecasts, suggested the use of a set of if-then rules to document the knowl-
edge. Nexpert Object provided a straightforward means by which the rules
could be built, and the inference engine to execute the DSS. Nexpert Object
provides the means by which rules can be written for: (1) Control of the
analysis process; (2) execution of external programs and packages to perform
various tasks; and (3) control of the display of text and the form of additional
queries to the user. These properties are used to arrange the system of rule
premises, and concluding actions within the long-range stream flow fore-
casting DSS: (1) To control access to the knowledge base; (2) to assign
properties describing the system; (3) to govern the selection of a model;
and (4) to check statistical tests for the model.

A Unix workstation, SUN Sparc Station 1+, was chosen to develop the
system. It enabled the simultaneous execution of multiple programs and
graphical displays. Networking between computers provided the ability to
transfer data or knowledge to and from numerous sources. The Unix op-
erating system provided a powerful and flexible environment.

The means by which users view the application is an important aspect of
development. Information and knowledge must be passed in a concise form
that promotes user comprehension of the related issues while improving
efficiency by automating many of the menial or straightforward tasks. Nu-
merous textual displays are required to describe necessary guidelines and
modeling options. Automation reduces the necessity of a novice user to
fully comprehend the details of time-series modeling. The emphasis of sys-
tem advice is focused on questions such as “why?" or “what if . . .7 User
focus may then be maintained for decision making on much higher level
problems such as general system behavior and model structure.

Nexpert Object controls the display from a session control window that
asks questions, and provides answer options. Flexible text windowing fea-
tures supplied by Nexpert, control the display of messages and advice to
the user. Development time for the DSS using Nexpert Object was low
because the developer does not require extensive programming abilities,
merely the ability to describe the system structure and various pieces of
knowledge within the modules. Execution of the decision-support tool for
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testing or establishing the validity of a hypothesis or system state is handled
entirely by Nexpert Object once the structure and rules are in place.

The scope of the system demands the utilization of numerous specialized
software and programming tools. Integration of these tools in an efficient,
and transparent. manner will not only prevent cluttering of the application
but actually enhance the aesthetic value and tutorial potential of the DSS.
Tools used to develop the system include the statistical analysis system
(SAS), Xgraph, Unix scripts, ASCII text files, and FORTRAN programs.
SAS is the primary tool used to perform statistical analysis of the data
including calculation of correlation functions, estimation of model param-
eters, testing model adequacy, and producing forecasts. Xgraph is a plotting
tool that graphs a specified set of data within the X-window graphical en-
vironment. It is useful in plotting forecasts or historical series of data. Unix
scripts are analogous to DOS batch files. A script is a text file consisting of
a series of operating system commands. Several of these files are used to
control the formation of input files and execution of both SAS and Xgraph
applications. Numerous FORTRAN programs control data manipulation
such as transformation, deseasonalization, and transfer of data to formatted
input for SAS, or form of output from SAS. Arrangement of these tools is
shown in Fig. 1, where the small black box represents the entire DSS where
the various components may be invisible to the user. Although Nexpert
Object is used to control the application, unix scripts are also used to control
timely execution of the other development tools, or execution tools. These
control tools and execution tools are the significant types of components
that operate together to provide the user with the system task option to
produce forecasts (forecasting), or develop a new model (model develop-
ment).

ThZa DSS developed for this case study contains two system modes or
tasks (Fig. 2). The first, model development, assists in the initial develop-
ment of time series models. Advice is given to help guide decisions by the
user, and the DSS automates many of the necessary functions including
data manipulation, and execution of the statistical software. The_ model
development mode provides the user with relevant knowledge and instruc-
tion to produce an adequate model using one of a number of time series

CONTROL EXECUTION
> FORTRAN
/.’,l Nexpert Object L__)
SAS
v
h
' Forecasting karap
Model Development —>1|ASCII text
data
System tasks knowledge

System tools
FIG. 2. DSA Tasks and Toois
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analysis procedures (Fig. 3). Advice instructs the user in choosing an ap-
propriate modeling technique and type of data transformation or manipu-
lation. The application automates all aspects of data transformation,
preparation of input files for SAS, execution of SAS, and transformation
of SAS output for display to the user. The user is directed to choose ap-
propriate parameters for the model. Automation allows efficient, consistent
testing of the model structure. This allows the user to produce advanced
time series models and forecasts of data without having to be experienced
in this field of study.

The second user mode, forecasting, enables the user to produce forecasts
based on recent flow behavior, using time-series model structures that have
already been developed and tested. Model-selection rules are accessed to
choose the most appropriate available model for forecasting. Forecasts are
automatically produced for the chosen model. Fig. 4 represents the process
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TABLE 1. DSS Goals

Hypothesis Description
(1) (2

(a) Forecasting

Set_model Find most appropriate model to produce forecasts
Get_flow Get description of current flow conditions

(b) Modet Development

l -
|

of producing a forecast within the application. The user is queried for in-
formation regarding the present system state. Rule-based knowledge ac-
cesses the model rankings for the specified conditions. Producing and plot-
ting of forecasts is also automated. ) )
Consultation of the time-series DSS, as previously described, directs the
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TABLE 2. DSS Input information: Forecasting

Forecasting

Parameters Options

(1) @)

Set Numerous data sets

Flow Low
—_ Median
— High
— Uncertain
Peak Low
— Median
- High
—_ ~ Uncertain

TABLE 3. DSS Input Information: Model Development

Modsl Development

Parameters Dphl:'-r-s
== (1) (2)
Procedure Sensonal B
— Deseasonalized
Transform Log
= MNone
P_lagsiq_lags/var Options dependent on procedure

— | Transformation

Parameters Significant
— [nzignificant

Chisquare Adequate
— Inadequate

Residuals Significant
— | Insignificant

user to produce either a forecast using the performance rules that govern
model choice, or develop a representative model. In order to produce monthly
forecasts for a specified stream, the rules corresponding to generalizations
from the performance sensitivity analysis must be available within the knowl-
edge base. If they are not available, the best the DSS can suggest is a model
structure based on general river basin characteristics. Performance rules are
contingent on the expert performing the sensitivity analysis with the best
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available time-series models, drawing conclusions. and updating the knowl-
edge base. Adding groups of performance rules is straightforward with
Nexpert Object. From a window environment, the premise and conditions
for each rule are entered. Nexpert will attempt to execute one of the rules
whenever the user selects a river basin for forecasting. When the available
model structures are specified in the knowledge base. execution of SAS will
estimate parameters based on the most recent update of flow records. Fig.
4 represents the process of accessing rules describing performance rankings
and choosing a particular model structure. The dashed lines represent paths
to possible model structures while the path to the chosen model is shown
by the bold arrow. Table 1 describes the hypotheses used to suggest or
control the decision-making process for producing forecasts. Tables 2 and
3 provides a short summary of variables used to describe the necessary
knowledge. Automation of the time series forecasting procedures and model
selection rules results in plots of the desired monthly forecasts against his-
torical monthly averages.

The conditions for passing the model selection rules will generate a series
of questions for the user whenever required information is not available.
Specifically, these questions are related to the present state of the system,
in qualitative terms. Fig. 5 shows interaction with a historical data set when
the user is uncertain of the system state. Visual inspection determines whether
flow tendencies are high, median, or low. Statistical analysis of the data will
provide a reasonable, or concrete, assessment of system state but automation
of interpretation of the system state may remove benefits derived from user
intuition and experience with the system. The user’s ability to grasp system
tendencies and effects from various sources is the advantage of allowing
user input.

Development of model structures by the user poses entirely different
problems for DSS development. In this case, the DSS acts to improve model
development efficiency for an experienced modeler by automating many of
the menial calculations, manipulations, and commands. However, the DSS
also acts as a tutor for inexperienced modelers. Advice is available through-
out the consultation, and must be thorough and concise. Messages and
advice is provided through the use of text windows which remain visible for
consultation, or can be discarded by the user.

Advice is required for a novice user when choosing the most appropriate
modeling technique (see Fig. 3). One of the observations from work on this
project is that ARMA models are better suited in Canadian conditions for
river basins with a relatively large amount of upstream storage such as a
series of small lakes that act to filter out large stream flow fluctuation.
SARIMA models tended to outperform ARMA models for streams that
exhibit a great dependency on precipitation events where large fluctuations
are possible. Appropriate data manipulation must also be chosen. For ARMA
models, choices are restricted by the decision to deseasonalize the data.

Knowledge, or advice, is required to specify the proper structure for the
model. This has traditionally been a trial and error process, but expert advice
by the DSS can reduce the development time. At this stage, the DSS acts
as liaison and interpreter for SAS (Fig. 6). SAS input files are created, SAS
is executed, and output is graphically formatted for the user. Advice is
provided to explain model requirements, correlation functions, and tests
being used to evaluate model adequacy. However, the most important ad-
vice is directed toward choosing a model structure that will likely represent
the behavior of the flow series. Fig. 6 shows SAS output on the lower right.
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Recommendations and advice are given on the right. This screen display
attempts to establish a differencing scheme, entered in the session control
window at the top of the screen, to use for a SARIMA model structure.
The DSS will suggest possible structures and instruct the user in the inter-
pretation of the ACF and PACF. Most importantly, the DSS will restrict
the user according to the chosen modeling technique. For example, TD
ARMA models do not require differencing because deseasonalization was
already performed to ensure a stationary correlation structure. Suggested
AR and MA parameters will not include seasonal AR or seasonal MA
processes since these seasonal properties are usually drowned out by de-
seasonalization.

Parameters are estimated through SAS, and the model structure is tested
by the three model tests previously described. If the model structure is
inadequate, the user is returned to the point in the parameter selection
process where changes are most likely needed. For example, if the t-test
suggests a particular parameter is insignificant, the user will need to define
the model without that parameter. If the chi-square test fails, but the t-test
is satisfactory, and no additional significant lags are apparent from exami-
nation of the residual ACF and PACF, the user may be required to select
another differencing scheme or transformation altogether. In other words,
the user is looped back only as far as necessary to save repetition of satis-
factory steps in the model development process. Table 1 describes the hy-
potheses used to suggest or control the decision-making process for pro-
ducing adequate model structures. Table 3 summarizes parameters used to
describe knowledge and input information for model development. When
a satisfactory model is found, the user can produce a plot of forecasts.

Through careful guidance, and concise advice, a novice user will be able
to produce an adequate model. For experienced time-series modelers, de-
velopment time may be greatly reduced by automation of many of the steps
in the modeling process. The DSS exhibits a great deal of power in being
flexible enough to handle both types of users without being cumbersome
for users with either extreme of experience and knowledge.

CONCLUSIONS

An application of decision-support techniques has been demonstrated for
water-supply forecasting. Experience in modeling time series for long-range
forecasting has been acquired and preserved within a DSS. A rule-based
knowledge system has been used to represent knowledge governing the
selection of a suitable forecast model for improvement of forecasting ac-
curacy, based on observations of model performance under various flow
conditions.

The DSS presented in this paper has been built within Nexpert Object,
a knowledge system development tool. It allows future expansion of advice,
messages, and management of data and forecast models. The database can
be expanded to accommodate any number of data sets and available models.
The statistical tools used to build the SARIMA models can also be used to
build advanced variations such as transfer function noise (TFN) models by
cross-correlating multiple data sets. Such models may reveal more infor-
mation concerning trends in the data.

Use of flexible modeling techniques, guided by observations of model
performance under varied flow conditions, may present users with potential
forecast improvements. Many large hydroelectric utilities demand forecasts
of natural inflows for long-range planning of reservoir releases. Intelligent
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automation of model selection. forecasting. or model development may
streamline forecasting operations. Benefits include improved time manage-
ment for modelers and forecasters, improved consistency of forecasting
procedures, and improved efficiency in planning long-range reservoir re-
leases.
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APPENDIX 1l. NOTATION

The following symbols are used in this paper:

AR = autoregressive time-series expression;
ARMA = autoregressive moving average time-series model;

a, = white-noise series;
B = backshift operator;

d, D = degree of differencing (nonseasonal, and seasonal)
L = seasonal lag;

MA = moving average time-series expression;

P, P = number of AR terms (nonseasonal, and seasonal);

q, @ = number of MA terms (nonseasonal, and seasonal);
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